

Remote Accessibility to Diabetes Management and Therapy in

Operational Healthcare Networks

REACTION (FP7 248590)

D5.6 REACTION SDK - Software Development
Kit tools

Date 2013-02-28

Version 1.0

Dissemination Level: Public

Legal Notice
The information in this document is subject to change without notice.
The Members of the REACTION Consortium make no warranty of any kind with regard to this document, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The Members of the REACTION Consortium shall not be
held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely the views of its authors. The
European Commission is not liable for any use that may be made of the information contained therein.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 2 of 77 DATE 2013-02-28

Table of Content

1 Executive summary ...4

2 Introduction ..5

2.1 Background..5
2.2 Purpose, context and scope of this deliverable...5

3 Understanding the REACTION SDK hierarchy ...6

3.1 The REACTION platform subsets ...6
3.2 How we make the components work together ..7
3.3 Online resources..7

4 Data Management ..10

4.1 Measurement Manager ...10
4.2 Context Data Manager ..11
4.3 Data Collection Manager ...11
4.4 Semantic IR Component (SIR) ..11

5 Service Orchestration..14
5.1 Event Manager ..14
5.2 Rule Engine ...16
5.3 Orchestration Manager..18
5.4 Alert and Alarm Manager...19

6 Network Management..20

6.1 P2P Manager...20
6.2 Performance and Fault Management ..21
6.3 Network Monitoring..24

7 Security Management..28

7.1 Security Manager...28
7.2 Identity Manager ..30

8 REACTION Device Connectivity Kit ...32
8.1 Overview of the Device Connectivity Kit..33
8.2 IoT Device..33
8.3 Medical Device ..34
8.4 REACTION Test Suite...35
8.5 Data Fusion Engine ...37

9 Risk Management and Decision Support ..41

9.1 Long-term Risk Manager ...41
9.2 Short-term Risk Manager ..44
9.3 Risk Classification Manager ..45

10 Application Development and Adaptation ..47

10.1 Generic Decision Support Development Component..47
10.2 Generic Questionnaire Development Component...48
10.3 Interface Adapters ...49

11 Summary...51

Appendix ...52

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 3 of 77 DATE 2013-02-28

Document control page

Code D5.6_REACTION_SDK_-_Software_Development_Kit_tools_v1.docx

Version 1.0

Date 2013-02-28

Dissemination level PU

Category P+R

Document Owner CNET

Participant
Partner(s)

CNET, ATOS, FIT, FORTH-ICS, FORTHNET, ALL

Author(s)
Stefan Asanin, Peter Rosengren, Peeter Kool, Tobias Brodén, Tamás Toth, Stelios
Louloudakis, Matthias Enzmann, Carlos Cavero Barca, Ioannis Karatzanis, Ioannis
Tsamardinos, Vincenzo Lagani, Franco Chiarugi.

Work Package WP5

Fragment No

Abstract
This deliverable contains description of components available as tools in the
REACTION SDK.

Status

 Draft
 Ready for internal review
 Task leader accepted
 WP leader accepted
 Technical Manager accepted
 Project Coordinator accepted
 Other (please specify if checked)

Previous Versions

Version Notes

Version Author(s) Date Changes made

0.1 Stefan Asanin 2013-01-18 Initial ToC

0.3 Stefan Asanin 2013-02-17 Reformatted content

0.7 Stefan Asanin 2013-02-28 Checked document

0.8 Stefan Asanin 2013-02-28 Revised document

0.9 Stefan Asanin 2013-02-28 Revised document

1.0 Stefan Asanin 2013-02-28 Final version submitted to the European
Commission

Internal review
history

Reviewed by Date Comments made

Lasse Christiansen 2013-02-28 Approved with minor comments

Ivo Ramos 2013-02-28

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 4 of 77 DATE 2013-02-28

1 Executive summary

The REACTION Software Development Kit (SDK) will allow developers to rapidly create new
networked applications on the REACTION platform. The generalised platform will support cost-
effective development of a broad range of innovative healthcare applications, so a user-friendly
development platform is warranted. The SDK will provide solution developers with a high-level
interface for innovative monitoring applications with embedded intelligence and closed loop feedback
provisioning using the REACTION platform.

The REACTION SDK toolkit for model-driven development of applications that use the REACTION
platform is a major tool for developing new telemedicine or eHealth applications or for device
manufacturers wanting to make their devices interoperable.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 5 of 77 DATE 2013-02-28

2 Introduction

The REACTION project aims to develop an integrated approach to improve long term management of
diabetes through continuous blood glucose monitoring, monitoring of significant events, monitoring
and predicting risks and/or related disease indicators, decision on therapy and treatments, education
on life style factors such as obesity and exercise and, ultimately, automated closed-loop delivery of
insulin.

2.1 Background

The REACTION project seeks to use the great potential of new technologies to cope with the
increasing number of citizens suffering from insulin-dependent diabetes. A user centred approach will
be used focused on the involvement of all stakeholders (i.e. patients, relatives and professional carer
as well as healthcare commissioners, business stakeholders, and regulatory authorities) in an iterative
cycle with the intention of maximizing the probabilities of success of the new technological platform of
services.

Technically, the REACTION platform (Figure 1) is structured as an interoperable peer-to-peer
communication platform based on Service-Oriented Architecture (SOA) where all functionalities,
including the measurement acquisition performed by sensors and/or devices are represented as
services and applications. These consist of series of services that are properly orchestrated in order to
perform a desired workflow. The REACTION platform also will make extensive use of dynamic
ontologies and advanced data management capabilities offering algorithms for clinical assessment
and evaluation.

Security and safety of the proposed services will be studied and necessary solutions to minimize risks
and preserve privacy will be implemented. Legal framework for patient safety and liability as well as
privacy and ethical concerns will be analysed and an outline of a policy framework will be defined.
Moreover, impacts on health care organizations and structures will be analysed and health-economics
and business models will be developed.

2.2 Purpose, context and scope of this deliverable

A range of REACTION services are being developed targeted to the management of insulin-
dependent diabetic patients in different clinical environments. The services aim to improve continuous
blood glucose monitoring (CGM) and insulin therapy by contextualized glycaemic control based on
patient activity, nutrition, interfering drugs, stress level, etc. for a proper evaluation and adjustments of
basal and bolus doses. Decision support will assist healthcare professionals, patients and informal
carers to make correct choices about blood glucose control, nutrition, exercise and insulin dosage,
and thus to reach a better management of diabetes therapy.

REACTION will further develop complementary services targeted at the long term management of all
diabetic patients, Type I and Type II. Integrated monitoring, education, and risk evaluation will ensure
all patients remain at healthy and safe blood glucose levels, with early detection of onset of
complications.

The purpose of this deliverable is to provide and describe all the components that are used in the
REACTION pilot but that also can be reused in other applications as part of the REACTION SDK.
Each component comes as description of a tool that independently or jointly can be deployed and
used to serve diabetes management and care.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 6 of 77 DATE 2013-02-28

3 Understanding the REACTION SDK hierarchy

Figure 1: REACTION modules and enclosed components.

The REACTION platform is the central production environment for the deployment of REACTION
applications. According to the DoW the platform consists in five subsets each one responsible for their
part of the overall functionality. These subsets make up the encapsulating modules in Figure 1.

3.1 The REACTION platform subsets

1. The Data Management subset is central to the high level functioning of applications and
services deployed on the platform. It implements the model-driven architecture for application
development and deployment, the service oriented architecture for core service functionalities,
data manipulation, data fusion and event handling. It also manages data transfer to and from
nodes and stakeholders in a REACTION environment.

2. A Service Orchestration subset will orchestrate the different services available in a pre-
described sequence for execution. This component introduces higher abstraction mechanisms
and makes the application developer independent of using a specific programming
environment to orchestrate REACTION applications.

3. The Network Management subset is responsible for the physical communication between
devices, persons and external repositories. Each PAN node will have its own Network
Manager and each Network Manager will have an external Web Service based interface
where it can exchange data with remote Network Managers.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 7 of 77 DATE 2013-02-28

4. The Security Management subset will perform mapping and brokering between security
models, user and client devices profiling management, mapping and usability between trust
domains, and semantic standards and generalisation ontologies development.

5. The Application Development subset is an open SDK for model-driven development of
applications that use the REACTION platform.

The purpose is to let applications to be developed and deployed to execute comprehensive tasks.
Each application serves specific goals and is constructed from a series of standardised workflows and
business rules. Applications are presumed to be developed and stored in the form of conceptual
domain models (ontologies). The domain model describes the functionality, the objects involved
(devices, users, rule sets, repositories, etc.), the security model to be used and the run-time
environment. Thanks to the REACTION SDK, applications are easy to build, modify and deploy to
different features.

3.2 How we make the components work together

The model-based application development and scalability approach taken in REACTION set an
architecture that supports model-driven development of services. It will allow service providers to
rapidly build, maintain and update services operating on the REACTION platform. The REACTION
development platform has the aim to be an open toolkit used for model-driven development of
services that use the REACTION platform and will be based on a structure of service ontologies. A
conceptual domain model describes the application, the services to be deployed and the objects
involved (devices, users, rule sets, repositories, etc.). A domain model is mapped to an operative data
model, which is implemented by an XML schema and a set of Web Service interfaces. Each externally
accessible component provides a WSDL interface, which exposes a subset of the domain model XML
schemas. Device specific services can be integrated with external services, such as knowledge
extraction, accessing an Electronic Patient Record (EPR) or providing feedback to a carer, merged
with workflow and resource scheduling services and supplied with security model and authentication
services. The deployment of applications will take the form of high-level and dynamic orchestration of
individual services. The actual service will then take the form of instances of basic services requiring
only personalisation and instantiation of objects and parameters.

The starting point of the iterative design process was a set of domain-specific vision scenarios
delivering end-user visions of applications in three different insulin therapy domains: General Ward,
Outpatient and Automatic Glucoses Control. This document will try to compile all these domains in
order to provide a single unified technical representation that is able to describe the development of
the REACTION platform where a SOA-based framework is used for domain-specific application
developers.

The JIRA Volere requirements created and made available online for the REACTION consortium
illustrates a wide area of applicability of the platform components. The intention was to make these
requirements to lead the way for the main functions that are defined. Initially we also have predefined
and already fully or partly available components that need to be assigned with proper roles and
functionalities.

3.3 Online resources

In the course of the project, repositories were designed and made available to the involved partners in
order to facilitate the exchange of software components and artefacts and the joint development of
software.

Software components and artefacts can be exchanged using an FTP secure server repository
accessible through FileZilla (ver. 3.5 or higher).

The repository is hosted by FORTH at the link: ftpes://thor.ics.forth.gr/ and configuration (connectivity,
accounts, security) and maintenance (including user management) is performed by FORTH upon
agreement with the REACTION consortium.

A screenshot of such repository is illustrated in fig. 1.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 8 of 77 DATE 2013-02-28

Figure 2 Access to the FTP repository through FileZilla.

For components developed by more than one partner a repository with versioning (SVN) has been
made available.

The repository contains 3 different folders for the development of 3 different application environments
(in-hospital, primary care and REACTION platform).

The repository is hosted by FORTH and can be accessed through Tortoise SVN using the links:

https://thor.ics.forth.gr/svn/Reaction (for the in-hospital)

https://thor.ics.forth.gr/svn/ReactionPrimaryCare (for primary care)
https://thor.ics.forth.gr/svn/ReactionPlatform (for the generic platform)

Configuration (connectivity, accounts, security) and maintenance (including user management) is
performed by FORTH upon agreement with the REACTION consortium.

A couple of screenshots of these repositories (once accessed with TortoiseSVN) are shown in fig. 2
and 3.

D5-6 REACTION SDK - Software Developer Kit tools REACTION (FP7 248590)

 1.0 9 of 77 DATE 2013-02-28

Figure 2: Access to the SVN repository (for in-hospital) through TortoiseSVN.

Figure 3: Access to the SVN repository (for primary care) through TortoiseSVN.

These repositories will remain available for the consortium partners for at least a year after the end of
the project.

4 Data Management

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

Figure 3: The Data Management subset of the REACTION platform.

The need for semantic interoperability is driving developments in current healthcare information
technology, and it is an important goal of REACTION. Semantic interoperability is about the clear
understanding of stored, used and communicated data and information by the users of this
information, in particular patients and health care professionals.

It is defined as: "Semantic interoperability means ensuring that the precise meaning of exchanged
information is understandable by any other system or application not initially developed for this
purpose” (EC Recommendation, COM (2008) 3282 final). Semantic interoperability implies that
received data can be combined seamlessly with local data and processed homogeneously, and that
clinical data from local and external systems can be combined and processed similarly and collectively
without loss of meaning. This requires the unambiguous definition of any used concepts where our
basis for semantic interoperability in REACTION will be based on the use of different ontologies.

4.1 Measurement Manager

The Measurement Manager provides functions for updating, querying and retrieving measurements
from the Observations Database.

Main functions are:

• Receive measurements and update database.

• Retrieve different vital signs measurements (e.g. blood Glucose, blood pressure, weight scale
SpO2, etc.) for patient Retrieve different vital signs measurements for specified time period.

• Provide conversions of measurements to different formats (e.g. ORU to XML and back).

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 11 of 77 DATE 2013-02-28

• Delete measurements.

• Checks measurement so it complies with patient informed consent.

• Acknowledge the received and successful storage of data.

4.2 Context Data Manager

The Context Data Manager provides functions for receiving, updating, deleting and retrieving context
data (nutrition, lifestyle, physical activities) from the context database.

Main functions:

• Retrieve context associated with a patient and a set of measurements.

• Receive and store context associated with a patient and environmental data.

• Update context and delete context associated with a patient.

4.3 Data Collection Manager

The Data Collection Manager is responsible for receiving incoming measurements and context data
and relates this to the correct patient. It routes the incoming messages to the correct manager e.g.
Measurement Manager or Context Data Manager. It acts as a frontend gate for all externally incoming
messages.

Main functions are:

• Exchanges basic configuration information with client gateways, e.g. what devices should be
there

• Adjusts transfer frequency after its performance quality

• Provides transparent communication to and from clients and other components

• Receive measurement

• Receive context data

• Receive device events and info

• Receive patient info

• Relate measurement to patient

• Relate context to patient

• Publish abnormal device state (events)

• Relate incoming patient info to stored patient

• Keep incoming message queue(s)

• Provide audit trail by logging incoming messages

• Unpacks data fused collections and updates context and measurement databases accordingly

• Provides client gateway statistics, e.g. number of messages processed per day.

• Checks with client gateways which devices are active and their QoS.

4.4 Semantic IR Component (SIR)

The Semantic Information Retrieval Component (SIR) enables the user to search for information in
textual documents. Three different kinds of archives can be searched:

• data base of EPRs – since EPR usually contains data represented in the form of natural
language text,

• the Cochrane archive,

• archives of guidelines

The first priority is the search in the patient records.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 12 of 77 DATE 2013-02-28

Figure 4 provides an overview on the components of the SIR.

Figure 4 Structure of SIR

The following subsections describe the components.

GUI

The GUI enables the user to enter the query, keywords and other data for the retrieval of relevant
documents, and shows the result of the search. The GUI:

• helps the user to edit the query in the form of phrases and/or sentences of a controlled natural
language

• helps the user to give keywords and other data for the search,

• verifies whether the query satisfies the rules of the controlled language, and gives warnings
and error messages,

• shows the list of the documents resulted by the search in an ordering according to their
relevance,

• after selecting a document shows the phrases/sentences having meaning similar to the query.

Parser

The Parser creates a graph (DAG – directed acyclic graph) representation of the syntactic structure of
the query and of segments of natural language texts. The Parser analyses natural language
phrases/sentences.

The Parser consists of several modules as it is usual in natural language processing (NLP). Some of
them are standard NLP programs; however, the most important components are made for the
semantic search according to special requirements.

Parsing the query or segments of documents is somewhat different, because the inputs are different.
In the first case a pre-processed and structured version is the input, in the second case the input is the
text itself. Therefore while in the first case the correctness of parsing is ensured, in the second case it
is not. However, problems in the parsing of text segments do not cause failures in the search, because
of the strategy built into the search engine.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 13 of 77 DATE 2013-02-28

Semantic Lexicon

The Semantic Lexicon stores the lexical units (words) with their semantic properties. The Semantic
Lexicon provides data for the Generator of the Meaning Representation. The Semantic Lexicon
consists of several components. There are separate but connected storage for the predicative words
(words expressing events, relations, mainly verbs) and for non-predicative ones. The reason is that
different resources store them. The predicative words are obtained from FrameNet; however, the
FrameNet corpus has to be completed substantially. WordNet is used for the non-predicative words.
Above these stores of words there are ontology capsules acting as upper ontology segments. The
medical terminology is obtained from MeSH.

The words are grouped into synonym-sets (synsets). We use the notion of being synonym in a less
strict way than it is used in linguistics: two words are synonym, if they refer to similar situation or item.
This definition is adequate for information retrieval. With the predicative words their valence patterns
are also represented, including semantic features (role relations) of the valence units. The role
relations are connected to the relations defined in the ontology capsules.

Generator of the Meaning Representation

The Generator of the Meaning Representation is responsible for building a meaning representation of
the query from the result of the Parser. The Generator of the Meaning Representation builds the
meaning representation of the query using the data obtained from the semantic Lexicon. The
Generator of the Meaning Representation:

• traverses the DAG got from the parser and

• represents words by their synsets,

• connects the synset tokens by relations corresponding to the syntactical connections of the
words

Pre-search Engine

The Pre-search Engine substantially reduces the amount of documents to be processed by a
preliminary search. The Pre-search Engine executes a key-word based search. If data base of EPRs
are searched, it executes the data base search based on numerical and coded data.

Search Engine

The Search Engine finds the phrases that may have similar meaning as the query (or its part) has.
The Search Engine tests segments of the syntactical structure of texts, whether they corresponds to
segments of the meaning representation of the query.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 14 of 77 DATE 2013-02-28

5 Service Orchestration

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

Figure 5: The Service Orchestration subset of the platform.

Ensembles of REACTION services are orchestrated by a specific high-level workflow e.g. based on
Business Process Execution Language (BPEL). The workflow will be specified in the application and
interpreted by the Orchestration Manager. The Orchestration Manager will make sure the different
services available are executed in a pre-described sequence. This component introduces higher
abstraction mechanisms and makes the application developer independent of using a specific
programming environment to orchestrate REACTION applications. It will also eliminate the
interdependencies of services, solve conflicts of services and provide the most flexibility environment
needed to realise service-oriented applications. The Orchestration Manager will also interface with
legacy back end systems such as operational workflow and resource scheduling systems (SAP, EPR
systems).

5.1 Event Manager

The Event Manager is responsible for providing, publishing and subscribing functionality to the
REACTION platform. In general, publish/subscribe communication provides an application-level
selected multicast that decouples senders and receivers by time, space, and data (i.e., sender and
receivers do not need to up at the same time, do not need to know each other’s network addresses
and do not need to use the same data schema for events they send). The Event Manager will be used
in any place where there is a potential many-to-many relationship between senders and receivers and
where asynchronous communication is desirable.

The Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to send a
notification to multiple subscribers while being decoupled from them (in terms of, e.g., not holding

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 15 of 77 DATE 2013-02-28

direct references to subscribers). The specific variant of publish/subscribe implemented is topic-based
publish/subscribe where key/value pairs represent events. With this approach, any subscriber or
publisher defines a topic simply by executing the “publish” or “subscribe” actions. In particular, the
Event Manager provides the following main functionalities:

• Subscription support allowing clients to subscribe to published events via a topic-based
publish/subscribe scheme

• Publication support allowing client to publish event on topics

• Routing events to subscribed clients

• Event Core manages persistent subscriptions, publication to subscription matching etc.

• Interfacing to Network Manager (e.g., broadcast-, multicast-, or gossiping-based
dissemination)

• Storing events

• Priorities events

• Retry sending events.

The Event Manager interface provides the methods for handling all the subscriptions, notifications and
publications. Figure 6Figure 6 provides an overview on the internal components of the Event Manager.

Figure 6: Event Manager.

The following subsections describe how the responsibilities are distributed between the internal
managers of the Event Manager.

Subscription Manager

The Subscription Manager is responsible for handling subscriptions, providing the methods: subscribe,
subscribeWithHID, unsubscribe, unsubscribeWithHID, getSubscriptions, clearSubscriptions and
clearSubscriptionsWithHID. The main functionalities of the Subscription Manager are the following:

• Handle (add, consult, remove) subscriptions.

This manager is responsible for handling subscriptions. This manager will provide the methods:
subscribe, unsubscribe, getSubscriptions, clearSubscriptions.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 16 of 77 DATE 2013-02-28

Notification Manager

The Notification Manager is responsible for notifying the subscribers of a specific topic that an event
with the same topic was published to the Event Manager. The main functionalities of the Notification
Manager are the following:

• Notify all the subscribers of a specific topic, that and event was published.

The Notification Manager component is responsible for notification of subscribers of an event. This
notification is handled by a queue of threads. This queue of threads is ordered by topic priorities, so if
several publications arrive to the Event Manager, the notification of the subscribers is done in a
prioritized way, depending on the priority of a topic, e.g., if topic A has higher priority than topic B, all
the subscribers of topic A will be notified first of this event. The notification of a subscriber can be done
directly to the subscriber in case the subscription was made using the “subscribe” method, or the
notification can be done through the Network Manager, in case the subscriber invoked the method
“subscribeWithHID”.

Publication Manager

The Publication Manager is responsible for handling publications to the Event Manager. The main
functionalities of the Publication Manager are the following:

• Handle publications from publishers.

The Publication Manager component is responsible for receiving publications from the publishers, and
delivers this publication to the Notification Manager that will notify all the subscribers to the event topic
published with the event data.

Event Core

The Event Core component will contain the subscription, subscribers and topics data structures and it
will provide the interface to the Network Manager. The Event Core component has the following main
functionalities:

• Contain subscriptions data

• Contain subscribers’ data

• Contain topics data

The Event Core component is the component containing all the data structures needed to be
consulted, changed by the other sub components of the Event Manager (Publication Manager,
Subscription Manager, and Notification Manager).

5.2 Rule Engine

The Rule Engine is responsible for managing and executing a set of rules. A rule is triggered when a
certain condition is met. The rule triggering leads to that a specified action is taken. This includes rules
for monitoring vital signs measurements but the Rule Engine is not limited to this. The rules are
flexible and allow specifying thresholds, targets and intervals for vital signs.

Therefore, the Rule Engine is consequently flexible and allows expressions of very sophisticated rules
although it is not expected that clinicians will use this interface. But rather, they will use the graphical
user interface described in the next coming sections.

Main functions are:

• Add rule

• Update rule

• Delete rule

• Evaluate rules

• Get rule report

• Get patient rules

• Associate alarms and alerts with patient rules

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 17 of 77 DATE 2013-02-28

The Rule Engine in this second prototype is implemented as an IoT (Internet of Things) -enabled
device using the Hydra middleware and it follows the same principles as the Data Fusion Engine. This
means it is possible to have a number of “virtual devices” doing specific rule tasks.

Such a Rule Engine device is configured using two configuration files. The first file defines the events
which define the scope of the rule device, i.e. these are the events that can trigger an action from this
rule engine device. The format for the event file is simple:

.<events>

<event>newobservation</event>

</events>

The above example defines that this rule engine will listen to the event “newobservation”.

The second file defines the rules and the actions to take if a rule triggers. The rules are expressed
using XSL-T. The following shows an example of a rule device that processes new incoming
observations for blood pressure and weight. The action it takes is to send an SMS to the patient to
confirm that the measurements have been received and processed.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:SMS="urn:SMS" xmlns:msxsl="urn:schemas-microsoft-com:xslt"

xmlns:user="http://www.cnet.se" xmlns:cnetuser="http://www.visualnetserver.com" exclude-

result-prefixes="SMS msxsl user">

 <xsl:output method="xml" version="1.0" encoding="ISO-8859-1"/>

 <xsl:template match="/">

 <xsl:apply-templates/>
 </xsl:template>

<xsl:template match ="event[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']">

<xsl:variable name="bpmsys"

select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"/>

<xsl:variable name="bpmdia"
select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"/>

<xsl:variable name="pulse"

select="//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

 <xsl:variable name="sms">

 We have received and processed your last bloodpressure measurement:

 Bloodpressure:<xsl:value-of select="$bpmsys"/>/<xsl:value-of select="$bpmdia"/>
 Pulse:<xsl:value-of select="$pulse"/>

 </xsl:variable>

 <reactionruleresult>

 <result>

 <xsl:copy-of select="SMS:CreateXMLForSMS($sms,
'46705619458','46705619458','reaction','r3@ct!0n')"/>

 </result>

 </reactionruleresult>

 </xsl:template>

<xsl:template match ="event[.//*[name()='CWE.2']='MDC_MASS_BODY_ACTUAL']">
<xsl:variable name="weight"

select="//OBX[.//*[name()='CWE.2']='MDC_MASS_BODY_ACTUAL']//*[name()='OBX.5']"/>

 <xsl:variable name="sms">

 We have received and processed your last weight measurement:

 Weight:<xsl:value-of select="$weight"/>

 </xsl:variable>
 <reactionruleresult>

 <result>

 <xsl:copy-of select="SMS:CreateXMLForSMS($sms,

'46705619458','46705619458','reaction','r3@ct!0n')"/>

 </result>
 </reactionruleresult>

 </xsl:template>

</xsl:stylesheet>

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 18 of 77 DATE 2013-02-28

If we study one of the rules we see that it triggers (through the match attribute”) when we have
received a blood pressure ORU-message (the code MDC_PRESS_BLD_NONINV_SYS).

<xsl:template match ="event[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']">

<xsl:variable name="bpmsys"

select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"/>

<xsl:variable name="bpmdia"
select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"/>

<xsl:variable name="pulse"

select="//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

 <xsl:variable name="sms">

 We have received and processed your last bloodpressure measurement:
 Bloodpressure:<xsl:value-of select="$bpmsys"/>/<xsl:value-of select="$bpmdia"/>

 Pulse:<xsl:value-of select="$pulse"/>

 </xsl:variable>

 <reactionruleresult>

 <result><xsl:copy-of select="SMS:CreateXMLForSMS($sms,

'46705619458','46705619458','reaction','r3@ct!0n')"/>
 </result>

 </reactionruleresult>

 </xsl:template>

Then there are 3 variable declarations that retrieves systolic, diastolic and pulse from the message
XML.

<xsl:variable name="bpmsys"

select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"/>

<xsl:variable name="bpmdia"

select="//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"/>

<xsl:variable name="pulse"
select="//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

The variable “sms” then composes a message using the three vital signs values.

<xsl:variable name="sms">

 We have received and processed your last bloodpressure measurement:
 Bloodpressure:<xsl:value-of select="$bpmsys"/>/<xsl:value-of select="$bpmdia"/>

 Pulse:<xsl:value-of select="$pulse"/>

</xsl:variable>

Finally, the action taken is to use the “SMS”-object to send the message to a specified phonenumber.

<reactionruleresult>
<result><xsl:copy-of select="SMS:CreateXMLForSMS($sms,

'46705619458','46705619458','reaction','r3@ct!0n')"/>

 </result>

</reactionruleresult>

This object is an extension object to XSL-T, which allows developers to extend style sheets with their
own functionality.

5.3 Orchestration Manager

The Orchestration Manager is responsible for managing and controlling execution of service
orchestration schemes. A Service Orchestration is a high level description of how to execute a set of
services in a specified sequence. The Service Orchestration is defined to support a specific workflow
or task. The Service Orchestrations are defined by authorised stakeholders. The Orchestration
Manager provides support for composite services and workflows. It is an execution engine for the
REACTION Orchestration Language. Main functions are:

• Add orchestration scheme

• Update orchestration scheme

• Delete orchestration scheme

• Start orchestration

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 19 of 77 DATE 2013-02-28

• Execute orchestration actions

• Stop orchestration

• Log and notify about orchestration events and actions

• Notify completion of orchestration

• Generate orchestration report

Figure 7: Subcomponents of the Orchestration Manager.

Schedule Manager:

The scheduler is responsible for running tasks or notifying applications when a specific criterion is met.
Such a criterion can be an e.g. specific (possibly recurring) time, system start-up, system shutdown.

Workflow Execution Manager:

The workflow execution module interprets orchestration descriptions and executes a set of services.
These orchestrations may represent a complex service composed of other services or part of a
REACTION application.

5.4 Alert and Alarm Manager

Purpose:
The Alert and Alarm Manager is responsible for deciding if an alert is to be generated or an alarm
fired. It is informed of new patient events. Alerts are notifications that can be sent to physicians,
informal carers or patients depending on the situation. The alerts can be sent using SMS, mail, or
result in an update in a database. An Alarm is generated when a critical situation has occurred and
requires immediate actions. The Alert and Alarm Manager uses the Rule engine to evaluate alert and
alarm rules. Main functions are:

• Add alert rule

• Update alert rule

• Delete alert rule

• Add alarm rule

• Update alarm rule

• Delete alarm rule

• Generate alert report

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 20 of 77 DATE 2013-02-28

6 Network Management

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

Figure 8: The Network Management subset and components.

6.1 P2P Manager

The Peer-to-Peer (P2P) Manager is the bottom layer of the LinkSmart middleware deployed in
REACTION Gateways and in Internet-of-Things-enabled devices (IoT Devices). It is the entry and exit
point of information of the LinkSmart middleware. There is only one Network Manager per device
where the middleware is deployed.

The P2P Manager provides a Web Service interface (which is the main interface of the P2P Manager),
which is the information entry point for the middleware. Data transferred between IoT-enabled devices
and gateways should always pass through the Network Manager.

The P2P Manager is responsible of managing the communication between IoT -enabled devices. In
order to do this, the P2P Manager:

• Creates and overlay P2P network, where all the IoT-enabled devices appear directly
interconnected, no matter if they are behind a NAT (Network Address Translator) or Firewall.

• Provides indirection architecture for addressing Web Services hosted by IoT devices using the
HID addressing mechanism. Each service is identified in IoT through an HID, which is a global
and unique identifier. The P2P Manager provides interfaces for other managers, applications
and IoT devices for HID creation, modification and deletion. It also offers the possibility to
select the transport protocol for the service invocation between TCP, UDP and Bluetooth.

• Provides a transport mechanism over the overlay P2P network for invoking Web Services
hosted by IoT devices (SOAP Tunnelling) using the HID addressing mechanism. The SOAP
messages addressed to an HID are routed by the P2P Manager through the overlay network

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 21 of 77 DATE 2013-02-28

to the P2P Manager hosting the service. Therefore, using the SOAP Tunnelling and the P2P
Manager any device or application is able to transparently publish and consume services
anywhere, anytime, breaking the network interconnectivity barriers and independently of the
service endpoint location.

• Provides a transport mechanism over the overlay P2P network for multimedia content
exchange between UPnP AV or DLNA devices.

• Provides session management mechanisms between HIDs during service invocations.

• Provides time reference synchronization between different P2P Managers.

• Provides a status page for developers, which the developer can use for monitoring dynamic
information about the Internet-of-Things Network and the HIDs available.

Figure 9 presents the sub-managers included in the P2P Manager and their relationships.

Figure 9: The P2P Manager Sub-Components.

6.2 Performance and Fault Management

The Network Monitoring component utilizes SNMP information to monitor the various AHDs in the
REACTION network. SNMP is suitable for remote management, configuration and basic network
monitoring, but less information can be retrieved to do further network traffic analysis. On the other
hand, this type of information is very useful for further analysis. The purpose of the Performance and
Fault Management component is to implement a network traffic probe to collect and analyse network
traffic usage in order to track relevant network activities including network utilization, network protocol
usage, traffic classification, fault detection, etc.

The basic functionality of the Performance and Fault Management subsystem can be summarized in
the following main areas:

• Classify traffic and track network traffic usage

• Track network bandwidth utilization

• Identify performance and security issues

Figure 10 provides an overview on the various subsystems comprising the Performance and Fault
Management component.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 22 of 77 DATE 2013-02-28

Figure 10: Performance and Fault Management architecture.

The Traffic Sniffer collects network packets and stores them on the database. This information is then
passed to the Traffic Analyzer for processing. Whenever traffic information needs to be displayed the
Report Engine renders the requested information appropriately. The following subsections further
describe how the responsibilities are distributed between the internal subsystems of the Performance
and Fault Management component.

Traffic Sniffer

This component is responsible for collecting network flows from routers in the REACTION network and
storing them for further analysis. The main functionalities of the Trap Dispatcher are the following:

• Filter network flows based on predefined preferences.

• Send data over the network using the NetFlow protocol

• Receive data from the network using the NetFlow protocol

Database Storage

This component is responsible for persisting traffic flows information. The main functionalities of the
Android Management Information Base (MIB) are the following:

• Create the schema for the traffic flows information.

• Store traffic flows to persistent storage.

• Retrieve traffic flows from persistent storage.

Traffic Analyzer

This component is responsible for analyzing traffic information that has been retrieved by the Traffic
Sniffer component. The analysis involves traffic classification, identification of specific network
activities (e.g. evaluation of specified rules for certain network variables), etc. The main functionalities
of the Trap Collector are the following:

• Debug network problems.

• Gather statistical data.

• Track suspicious access to specified network resources.

Report Engine

This component is responsible for presenting the statistical information which is the output of the
Traffic Analyzer component through a web interface. The Database Storage component has the
following main functionalities:

• Generate reports allowing remote users and administrators to analyze traffic statistics by
means of a web browser.

The Performance Fault Manager component does not depend on any other component in the
REACTION backend for its proper operation. The Performance and Fault Manager component does

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 23 of 77 DATE 2013-02-28

not expose a public interface to other REACTION components. It makes available Performance and
Fault monitoring information, in various forms, to network administrators through its Report Engine
component, which is accessible through the relevant web URL.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 24 of 77 DATE 2013-02-28

6.3 Network Monitoring

The Network Monitoring subsystem monitors data traffic and assesses the transmission quality
between the Patients’ Sphere and the Carer’s Sphere, the REACTION backend and other backend
systems and EHRs with the Body Area Network (BAN) and Personal Area Network (PANS)
components.

To enable network management functionality in all these areas of the REACTION system, a selection
of monitoring points in the system must be made where appropriate software will be installed. This
essentially constitutes the topology of the network management infrastructure.

Furthermore, the type of information to be collected from network elements must be specified to
enable the monitoring framework to poll network elements for this information, process it and assess
various aspects of the network including security, Quality of Service (QoS), availability, etc.

The basic functionality of the Network Monitoring subsystem can be summarized in three main areas:

• The first functional area involves the initialization of the android devices in the REACTION
network. This entails an automatic configuration process which is controlled by the
REACTION backend (an Edge Monitoring Node, or EMN, to be precise) and during which the
device obtains information that is necessary to start communicating with the REACTION
backend, e.g. a unique identifier, a description of the information to be periodically transmitted,
etc.

• The second area involves the action of broadcasting status updates by the android devices
operated either at the patient’s premises or the hospital wards.

• The last functional area is the periodic polling from the monitoring server in order to collect the
status for the various devices in the network. Each function includes complementary actions,
such as retrieving the status of each device from the underlying OS, storing the status in a
database at the monitoring server, etc.

To better understand the mentioned functionality an examination of the network monitoring topology is
necessary. This is presented in the component diagram depicted in Figure 11. Figure 11Figure 11.
Figure 11 provides an overview on the various subsystems comprising the Network Monitoring
component.

Figure 11: Network Monitoring topology.

A three-layer topology is shown in the diagram consisting of the following elements in each layer:

• Android devices (Application Hosting Devices - AHDs)

• Edge Monitoring Nodes (EMNs)

• A Central Monitoring Node (CMN)

The EMNs act as proxies for the various AHDs essentially serving as intermediate collection points of
information regarding the status of the android devices. The CMN polls the EMNs for this information,
as well as any other network device is considered necessary. The EMNs are deployed within separate

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 25 of 77 DATE 2013-02-28

organizational boundaries in order to collect status updates from the AHDs operated within the same
organization (e.g. hospitals or primary care facilities).

From the component diagram it is evident that there are three interaction points between the three
tiers of the architecture. The first interaction involves the ConfigurationManager component on the
EMNs with the SNMP Service on the AHDs. The second interaction involves the TrapDispatcher
component on the AHDs with the TrapCollector component on the EMNs, while the third interaction is
between the SNMPAgent component on the EMNs and the SNMPPoller component on the CMN.
These interactions are independent of each other and constitute the main integration elements on
which the integration tests need to be focused on.

The following subsections further describe how the responsibilities are distributed between the internal
subsystems of the Network Monitoring component.

Network monitoring subsystems’ interactions

In this section the interactions between the three tiers comprising the Network Monitoring component
are further analyzed through appropriate UML sequence diagrams to provide the details that are
necessary in order to formulate the necessary integration tests.

In the first sequence diagram the interactions between the various components involved for sending
periodic notifications from the AHDs to the associated EMN are depicted. This diagram captures the
interactions that need to be tested to verify a successful integration between layer 1 (AHDs) and layer
2 (EMNs) of the network monitoring subsystem.

In the second sequence diagram the interaction between the CMN and the various EMNs is depicted.
This diagram captures the interactions that need to be tested to verify a successful integration
between layer 2 (EMNs) and layer 3 (CMN) of the network monitoring subsystem.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 26 of 77 DATE 2013-02-28

Beside the tests required to verify the interactions depicted in the two sequence diagrams, tests are
also necessary to verify the end-to-end integration for the system. In other words verifying that Layer1-
Layer2 and Layer2-Layer3 integration is successful does not guarantee end-to-end integration
(Layer1-Layer2-Layer3).

Trap Dispatcher (Android Device)

This component is responsible for sending the periodic SNMP device status updates to the
REACTION backend. The main functionalities of the Trap Dispatcher are the following:

• Create appropriate SNMP notifications.

• Send status update.

Android MIB (Android Device)

This component is responsible for describing the type of information to be included in the device status
updates that are sent to the REACTION backend. The main functionalities of the Android MIB are the
following:

• Add device status element.

• Get device status element.

Trap Collector (EMN)

This component is responsible for collecting and verifying the SNMP status updates from all registered
devices residing in the associated organizational subnet. The main functionalities of the Trap Collector
are the following:

• Receive new status update from registered device.

• Verify SNMP status update.

Database Storage (EMN)

This component is responsible for storing the received status updates to persistent storage in such a
way that they can be easily polled by the CMN. The Database Storage component has the following
main functionalities:

• Define/Create status update database schema.

• Store new status update.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 27 of 77 DATE 2013-02-28

SNMP Agent (EMN)

This component is responsible for answering to polling requests by the CMN and retrieving status
updates from persistent storage. The SNMP Agent component has the following main functionalities:

• Handle SNMP polling request.

• Retrieve status updates from the Db Storage component.

• Create SNMP response with requested information.

• Send SNMP reply to poller.

Configuration Manager (EMN)

This component is responsible for registering and unregistering REACTION devices and providing the
necessary information so that each device can be initialized and start sending periodic notifications.
The Configuration Manager component has the following main functionalities:

• Register new device.

• Un-register device.

• Send configuration information.

Web Interface (CMN)

This component is responsible for presenting information regarding the network status of each device
in the REACTION network to administrative personnel. It also provides notification options for alerting
the appropriate personnel when predefined network conditions occur. The Web Interface utilizes the
Cacti open source NMS to implement the necessary functionality. The Web Interface component has
the following main functionalities:

• Present network monitoring information in appropriate form.

• Provide notification alerts.

• Register/unregister EMNs to be monitored.

• Manage polling intervals for the various monitored devices.

• Provide network templates to specify and manage the network variables to be monitored.

Database Storage (CMN)

This component is responsible for storing the obtained monitoring information from each registered
EMN to persistent storage in such a way that they can be easily polled by the CMN. The Database
Storage component has the following main functionalities:

• Define/Create network monitoring db schema.

• Store monitoring information.

SNMP Poller (EMN)

This component is responsible for polling the registered EMNs at the specified polling intervals for the
network variables defined at the appropriate network templates. The SNMP Poller component has the
following main functionalities:

• Poll registered EMNs to store the current network status.

The Network Monitoring component does not expose a public interface to other REACTION
components. It makes available network monitoring information, in various forms, to network
administrators through its Web Interface component, which is accessible through the relevant web
URL.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 28 of 77 DATE 2013-02-28

7 Security Management

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

7.1 Security Manager

The Security Manager is responsible for providing authenticated and/or confidential communication
between the REACTION system and its users, which will be the meaning of ‘security’ for the purpose
of this section. The Security Manager will also control access to the components described in this
document, i.e., it will only permit access to the Web services implemented by the components to
authorised parties. The purpose of the Security Manager is to provide basic security for all
components and not application or service specific security. If necessary, the latter needs to be
implemented separately.

Unlike other components specified in this document, the Security Manager is not a Web service and
operates at a level ‘below’ other components. A rough sketch of a typical ‘Web service stack’ is shown
in Figure 12.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 29 of 77 DATE 2013-02-28

Figure 12: Web service stack.

Components described throughout this document are typically located at the Web Service
Implementation Layer, i.e., layer 4, and implement an interface imposed by the API of the underlying
Web Service Framework located at layer 3. This framework, in turn, will run on a Web server which
handles the basic communication, i.e., the transport of the Web service messages at layer 2. In
addition, Web servers typically also support security at layer 1, meaning that the communication
between the server and its clients is encrypted and, at least, the server can authenticate to its clients.

In principle, security can be provided at any layer mentioned before. However, depending on the layer
where security is implemented, the impact on the components differs. In the following, we will briefly
go through the implications of having security implementations at different layers of the stack. Note
that the following discussion only pertains to the server side. As a second note, the options discussed
below, except for the layer 4 option, aim at providing security in a transparent way, i.e., component
developers should not need to care about security.

Implementing security at layer 4 means that every component developer would have to take care of
security by himself, e.g., by encrypting results returned by the component. This is not only error prone,
since developers may leave out encryption on purpose or simply forget to encrypt the results before
returning them, but the results can also be difficult to interpret by users of the service since they need
to know how the results where encrypted in order to be able to decrypt them. Hence, implementing
security at layer 4 does not seem to be an option.

Implementing security at layer 3 means that a security module will have to be created for the concrete
Web Service Framework at hand, e.g., Axis, Axis2, CXF (Crossfire). This means, the module will have
to be tailored to a specific framework and it is unlikely to be usable for any other framework. Hence for
the development of the components, it is imperative to commit to a single framework as the work for
supporting multiple frameworks is most likely linear in the number of frameworks and thus unviable.
On the positive side, at this layer standards exist, like Web Service Security (WSS), which can be
employed to allow for somewhat uniform handling of secured Web service messages. “Somewhat”
means that while WSS defines syntax for describing signed and/or encrypted content, it still has many
options which need to be determined beforehand. Also if different frameworks come with their own
WSS implementations, their processing algorithms may differ and thus, uniform handling is not
guaranteed. In conclusion, if components are implemented using different Web service frameworks,
implementing security at layer 3 is not an option.

Implementing security at layer 2 means to directly operate on the ‘raw’ HTTP messages containing the
Web service messages. This could be done, e.g., by tunnelling the HTTP messages through a
transparent Web service proxy. A security proxy essentially works like the security module described
for layer 3, i.e., it could use WSS to provide security. The major difference between a security proxy
and a framework security module is that the proxy would be a stand-alone component with a separate

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 30 of 77 DATE 2013-02-28

stack, e.g., it may not even require layers 3 and 4, and would be independent of any framework. Thus,
the framework limitation coming from a layer 3 implementation would be gone. However, since the
proxy has its own stack, it has to forward its output, e.g., the decrypted Web service message, to
another server which hosts the service component for which the Web service message is intended.
Since this server would not implement any security, the message is ‘unprotected’ when travelling from
the proxy to the component’s host. Depending on the trust model, this may or may not be a security
problem. If the security proxy would be running on the same host as the server hosting the Web
service component and the trust model is such that communication on the same device is assumed to
be trusted, then no security problem arises – this is the trust model used for the in-hospital prototype.
Likewise, if the trust model would be such that services running in the same network

1
 are trusted, the

security proxy could be run on a different device and the ‘unprotected’ network communication
between the proxy’s host and the service component’s host would not be a security problem, too.
However, if a proxy cannot run on the same host as the Web service component and it cannot be
assumed that the proxy’s host and the Web service component’s host are running in a trusted network
then implementing security at layer 2 is not an option.

Implementing security at layer 1 means that HTTP messages are tunnelled through a security
protocol, namely the Transport Layer Security (TLS) protocol. From an implementation point of view,
having security at layer 1 is comparable to having security at layer 3. Since TLS is normally provided
by the Web server, a security component controlling a Web server’s TLS engine will have to be
tailored to a specific Web server type, e.g., Apache Tomcat 6. On the positive side, having security at
layer 1 can be more efficient than having it at other layers because security negotiations are made
before potentially large Web service messages are sent and received. In addition, although a security
engine at layer 1 depends on the concrete Web server, it may be independent of the Web service
framework, provided that the different frameworks can be run by the same Web server type. In
conclusion, if components require different server types then implementing security at layer 1 is not an
option.

Main functions are:

• Authenticate users of components

• Decrypt incoming messages / encrypt outgoing messages, if necessary

• Control access to components

The following are components which would be required to implement security dependent on the option
chosen. In any case, only one out of the four options will be used.

• Layer 4 option – Library (Jar)

• Layer 3 option – Framework Module

• Layer 2 option – Web Service Proxy

• Layer 1 option – TLS engine

The following list outlines who/what would be constrained if security is to be implemented at the given
layer.

• Layer 4 option – Developer of Component

• Layer 3 option – Web Service Framework being used

• Layer 2 option – Trust Model employed for component hosts

• Layer 1 option – Web Server type

7.2 Identity Manager

The purpose of the Identity Manager is to support an Identity Security infrastructure (with minimum
overhead) which is required to block actions from identities. The security and privacy chain as well as
important trust concerns will therefore be identified and ranked so that secure identity management
can be implemented throughout the platform. Hence the REACTION project aims to provide a visible

1
 ‘Same network does not necessarily mean ‘physically connected’ hosts but could also include different physical

networks connected through a VPN.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 31 of 77 DATE 2013-02-28

and controllable distributed security and privacy model, which is based on the concept of trust as a
multilateral relation between stakeholders in a community of patients, informal carers and healthcare
professionals and providers.

In sum, REACTION will combine identity virtualisation with infrastructure-based accountability
negotiations, which are very efficient but also complex.

Main functions are:

• Create new user.

• Update user.

• Delete user.

• Assign role.

• Add password.

• Change password.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 32 of 77 DATE 2013-02-28

8 REACTION Device Connectivity Kit

The REACTION Device Connectivity Kit is used to implement solutions for integrating and interfacing
with various medical device types. Normal it used to create the software that runs in the Patient
Sphere, for instance on a patient home gateway.

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 33 of 77 DATE 2013-02-28

8.1 Overview of the Device Connectivity Kit

DEVICE CONNECTIVITY KIT

IEEE 11073 PROTOCOL

MODULE

TosHDP Bluetooth

IEEE 11073 DEVICE HANDLER

HDPBridge

MEDICAL DEVICE HANDLER

VirtualBridge

WELLNESS DEVICE HANDLER

VirtualBridge

HDPDEVICE CLASS (E.G. BPM)

Measurement

Services

IEEE 11073

AgentSpec.

IDHandler

IoT DEVICE

IoTServices

IoT DEVICE

ONTOLOGY

MEDICAL DEVICE

Message Services

Observation Services

ZigBee HCP

USB HDP

GENERIC PROTOCOL MODULE

Generic Bluetooth

Wifi Virutal HDP

ZigBee

Wi-Fi

USB

ANT+

Figure 13: Hierarchical architecture of the classes used in the DCK.

8.2 IoT Device

IoT Device is the base class for all devices and sensors that have been developed using LinkSmart in
an Internet of Things (IoT) application. It exposes a generic IoT Service. The IoT Device Manager
handles several service requests and manages the responses. The IoT Device Manager class is a
generic class that is sub-classed depending on device type, example of subclasses are Medical
Device Manager, BloodPressureMonitor Device Manager. Bluetooth Device Manager, Basic Phone
Device Manager, Basic Switch Device Manager.

Main Functions are:

• Maps requests to device services

• Generates responses

• Advertising IoT device descriptions

• Advertises device services

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 34 of 77 DATE 2013-02-28

Figure 14: IoT Device Manager

Advertise:
This module is responsible for broadcasting the existence of the device to the outside world. It will
support advertising thru several protocols, at least UPnP (Universal Plug and Play).

Request Mapping:
This module maps a request from an outside caller to an internal service in the device.

Response Generator:
This module maps translates the result of an internal service in the device to a response
to the caller.

8.3 Medical Device

Medical Device is the base class for all medical devices and sensors that have been integrated using
the Device Connectivity Kit. The Medical Device Manager is a subclass of the IoT Device Manager. It
exposes a generic Medical Service and can push measurements to the server side, and also supports
on-demand retrieval of data from the patient side.

Main functions are receive measurement from physical device, send measurement to server side or
other modules, receive events from physical device, propagate events to Event Manager and get
observation as plain ORU or XML ORU.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 35 of 77 DATE 2013-02-28

Figure 15 Overview of Medical Device components.

8.4 REACTION Test Suite

The Test Suite is a tool that can be used to create Medical Devices from the Device Connectivity Kit,
and supports Blood Pressure Monitor, Weighing Scale, Glucose Meter and Pulse Oximeter. The
communication to the device is handled through the Medical Device Manager.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 36 of 77 DATE 2013-02-28

Main Functions are:

• Create Medical Devices

• Set a new measurement

• Invoke Medical Device to send a HL7 ORUR01 message

• Test the Medical Device software functionality

• Test server side components that handle

The Test Suite is a Silverlight application that uses the Test Suite Handler built into the Device
Connectivity Kit.

Figure 16: Test Suite component overview.

Figure 17: Main page and overview of created devices.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 37 of 77 DATE 2013-02-28

Figure 18: Configuration of a Weighing Scale device.

8.5 Data Fusion Engine

The Data Fusion engine is responsible for collecting, combining and aggregation data from two or
more medical sensors/devices. In the Data Management subset, the Data Fusion engine will result
from the focus on the design of a device and network-based data fusion/diffusion model. This model
will provide a semantic integration of a multitude of heterogeneous medical devices and media,
information sources and services and communication.

REACTION will primarily have to manage patient specific data fusion at a device level data fusion.
This means that each patient is unique and therefore clinicians must be able to configure and control
the medical measurements and the context data required for each separate patient under monitoring.
To achieve this, the device level data fusion will need to capture relevant context data at the point of
measurement and through history. The Data Fusion Engine will therefore have to handle different data
values (time, temperature, location, etc.) from multiple devices and aggregate these into a single
observation.

The work on the REACTION Data Fusion for the Client side is a long process and is currently covered
by the ORU-R01 message segmentation while the Data Fusion Engine itself is manifested in the
REACTION Server side and next coming section here.

The Data Fusion Engine subsystem takes part of the Data Management subset which is central to the
high level functioning of applications and services deployed on the platform. In summary, the intention
of the Data Fusion Engine is to 1) aggregate multiple data sources into uniform representation and 2)
manage data transfer to and from nodes and stakeholders in a REACTION environment.

Main functions are:

• Set data fusion scheme

• Discovery and connect to sub devices

• Collect data

• Listen to device events

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 38 of 77 DATE 2013-02-28

• Aggregate and correlate events and observations based on data fusion scheme.

The Data Fusion Engine in this second prototype is implemented as an IoT-enabled device using the
Hydra middleware. This means it is possible to have a number of “virtual devices” doing specific data
fusion tasks.

Such a data fusion device is configured using two configuration files. The first file defines the sub
device which delivers the data to be fused by the Data Fusion Device. For instance the following file
defines a data fusion device that will work with a weight scale and a blood pressure monitor..

<?xml version="1.0" encoding="UTF-8"?>

<datafusion>
<subdevice xpath="//*[name()='friendlyName' and .='Medical Device: Weighing Scale

Device']" name="WeigthScale"/>

<subdevice xpath="//*[name()='friendlyName' and .='Medical Device: Blood Pressure

Device']" name="BPM"/>

</datafusion>

The format is simple. The subdevice element of the XML file defines a data providing device. The
xpath attribute is the search string that will select the device from the Application Device Catalogue in
REACTION. Currently one limitation is that the xpath expression should result in one device, not a set
of devices. The name attribute defines the name that the device will be known under and referred to in
the fusion schemes, see details below.

The second file defines the algorithms and how to merge, fuse and integrate data. This file is called
the fusion scheme. Currently it is expressed using XSL-T. The following example shows how weight
and bloodpressure is merged together to one value:

<xsl:template match ="weightbpmvalue">

<xsl:variable name="obx1" select="WeigthScale:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>
<xsl:variable name="obx2" select="bpm:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>

<xsl:variable name="weight" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_MASS_BODY_ACTUAL']//*[name()='OBX.5']"/>

<xsl:variable name="bpmsys" select="msxsl:node-
set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"/>

<xsl:variable name="bpmdia" select="msxsl:node-

set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"/>

<xsl:variable name="pulse" select="msxsl:node-

set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

 <fusedvalue>
 <weight>

 <xsl:value-of select="$weight"/>

 </weight>

 <bpmsys>

 <xsl:value-of select="$bpmsys"/>
 </bpmsys>

 <bpmdia>

 <xsl:value-of select="$bpmdia"/>

 </bpmdia>

 <pulse>

 <xsl:value-of select="$pulse"/>
 </pulse>

 </fusedvalue>

 </xsl:template>

The two first variable statements:

<xsl:variable name="obx1" select="WeigthScale:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>

<xsl:variable name="obx2" select="bpm:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 39 of 77 DATE 2013-02-28

These statements retrieve two ORU-messages from two different medical devices. The following
statement simply extracts the different vital signs, by searching inside the ORU-message XML.

<xsl:variable name="weight" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_MASS_BODY_ACTUAL']//*[name()='OBX.5']"/>

<xsl:variable name="bpmsys" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"/>
<xsl:variable name="bpmdia" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"/>

<xsl:variable name="pulse" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

Finally, the following statements define how the different values should be assembled into one XML-
structure and returned from the Data Fusion device:

<fusedvalue>

 <weight>

 <xsl:value-of select="$weight"/>

 </weight>
 <bpmsys>

 <xsl:value-of select="$bpmsys"/>

 </bpmsys>

 <bpmdia>

 <xsl:value-of select="$bpmdia"/>
 </bpmdia>

 <pulse>

 <xsl:value-of select="$pulse"/>

 </pulse>

</fusedvalue>

The result will then be and XML string looking like:

<fusedvalue>

 <weight>80</weight>

 <bpmsys>120</bpmsys>
 <bpmdia>70</bpmdia>

 <pulse>54</pulse>

</fusedvalue>

The XSL-template above is triggered when the method GetFusedValue(string name) is called from an
external component. In this case the “name” parameter will trigger the correct template. In the
example above, the call GetFusedValue(“weightbpmvalue”) should be used.

There is also the option to do the data fusion based on events occurring. The template below shows
an example of this:

<xsl:template match ="topic[.='deviceStateChanged']">

<xsl:variable name="obx1" select="WeigthScale:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>
<xsl:variable name="obx2" select="BPM:ExecuteXML('urn:upnp-

org:serviceId:medicalobservationservice:1','GetObservation','')"/>

<xsl:variable name="weight" select="msxsl:node-

set($obx1)//OBX[.//*[name()='CWE.2']='MDC_MASS_BODY_ACTUAL']//*[name()='OBX.5']"/>

<xsl:variable name="bpmsys" select="msxsl:node-
set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_SYS']//*[name()='OBX.5']"

/>

<xsl:variable name="bpmdia" select="msxsl:node-

set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PRESS_BLD_NONINV_DIA']//*[name()='OBX.5']"

/>

<xsl:variable name="pulse" select="msxsl:node-
set($obx2)//OBX[.//*[name()='CWE.2']='MDC_PULS_RATE_NON_INV']//*[name()='OBX.5']"/>

<xsl:variable name="activity" select="ActivityHub:Execute('urn:upnp-

org:serviceId:activityhubservice:1','GetLatestMeasurement','')"/>

<xsl:variable name="motion">

There has been movement in:
<xsl:for-each select="msxsl:node-set($activity)//Sensor">

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 40 of 77 DATE 2013-02-28

<xsl:if test="Type ='MotionDetector' and Value='YES'">

<xsl:value-of select="Location"/><xsl:if test="not(Sensor[last()])">,

</xsl:if>

</xsl:if>

</xsl:for-each>

</xsl:variable>
<xsl:variable name="fusionreport">

Datafusion report:

weight : <xsl:value-of select="$weight"/>

bloodpressure: <xsl:value-of select="$bpmsys"/>/<xsl:value-of select="$bpmdia"/>

pulse : <xsl:value-of select="$pulse"/>
LightSwitch Status: <xsl:value-of select="//eventpart[key='IoTVariableValue']/value"/>

Activity:<xsl:value-of select="$activity"/>

</xsl:variable>

<xsl:copy-of select="EventManager:Publish(newfusionvalue, fusionreport)"/>

</xsl:template>

This code assumes that two more sub devices – Activity Hub and a Lightswitch have been added to
the definition of the Data Fusion Device. The XSL-template is triggered by an event that is generated
when the lightswitch is turned on and off. This generates the event “devicestatechanged”. The code
shows how the weight and blood pressure are collected. In addition to this the code traverses all the
sensors attached to the activity hub to see if there has been any activity in different rooms. All the
information is compiled into a “fusionreport”.

Then this fusionreport is published as an event using the REACTION Event Manager. In this way the
data fusion engine acts as a high level layer so that other managers and applications don´t have to
listen for low level events but can process aggregated information.

The configuration file and the data fusion schemes are in this prototype produced by the developer.
Next step is to develop a graphical user interface that makes it simple to define different data fusion
schemes.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 41 of 77 DATE 2013-02-28

9 Risk Management and Decision Support

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

9.1 Long-term Risk Manager

The Long Term Risk Assessment models (LTRAMs) component is designed to manage the
REACTION risk assessment engine, offering a set of functionalities for the long term prognostic
evaluation of diabetes patients.

Main functions are:

• Accept a risk-assessment request as an input: the request should contain the patient profile
and the diabetes complication(s) of interest

• Process the patient data and compute the risk profile, even when some measurements of the
clinical parameters are not provided in the patient profile (missing information)

• Return the risk-profile as a function of the personalized risk and probability for developing the
complication over time

REACTION decided to implement the LTRAM component as a set of independent Web Services
(WSs), each one providing an evaluation for a specific diabetes complication. This architecture
presents several advantages:

• it is fully modular; each WS is independent from the other ones, and new services can be
easily added or updated

• WS technology is widely used and accepted nowadays; the development and deployment of
applications able to interact with WSs is fast and supported by several automatic tools

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 42 of 77 DATE 2013-02-28

• the functionalities of the LTRAM component requires a stateless interaction, an operation
schema particularly suitable for a Server – Client architecture

The first Web service for assessing the risk of developing Retinopathy has been implemented.

Figure 19 introduces the internal architecture of each single Web Service. Each WS consists of (a) the
Web Service Interface, i.e. codes and libraries that implements the required ICT standards (SOAP,
WSDL, etc.) for communicating with other application, and (b) the Service Core, that contains the
software implementation of the predictive model and the functionalities for dealing with incomplete
patient profiles (Missing Information Module).

Figure 19: Internal Architecture of a single Web Services handled by the Long-term Risk Manager.

The operation of the Web Service is as follows:

• A predictive model for the time-to-event can be considered as a function),,,(1 n
xxtS L ,

where x1 , ..., xn, are the values of n clinical parameters and t is the time.),,,(1 n
xxtS L is the

probability of developing retinopathy after time t for a patient with the given clinical values for
x1 , ..., xn, . Most such models in the literature require that all clinical parameters should be
provided for the function to apply. Hence the need for the Missing Information Module. Such
models are often implemented as Cox Proportional Hazards models. The model has been
induced from the DCCT data by employing advanced and basic feature selection and
regression methods for survival analysis.

• To compute the risk for any possible subset of the 80 clinical parameters, one would need to
learn a predictive model for each possible such subset (about 10

24
 models). The Missing

Information Module instead employs a different trick to achieve the same results involving
learning a single predictive model, and a Bayesian Network on all clinical variables. In more
detail, the module computes the conditional joint probability distribution p(x1 , ..., xn | evidence)
where evidence are the clinical values of any subset of the possible input clinical parameters
listed in Table 2. The computation of this joint distribution is implemented by doing inference
on a Bayesian Network on all clinical parameters. The risk assessment for a patient with
clinical parameters in the vector evidence is then computed as:

Once a request is received, the Missing Information Module computes p(x1 , ..., xn | evidence) and S(t,
evidence) by iteratively invoking the predictive model. The Web Service Interface is simply in charge
of receiving the request and sending back the evaluation, in XML format.

In order to ensure an easy integration of the LTRAM Component in the REACTION platform, the Web
Service Interface is built following the most common WS Standard Protocols: Simple Object
Application Protocol (SOAP), Web Service Description Language (WSDL), Universal Description
Discovery and Integration (UDDI). The WSDL protocol is employed to describe the functionalities of

Web Service Interface

Predictive Model
Missing

information Module

Service Core

Risk Assessment Web Service

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 43 of 77 DATE 2013-02-28

the Service Provider; the UDDI protocol allows the discovery of the Web Services with the desired
functionalities; the SOAP protocol allows the actual interaction among the Web Service (Service
Provider) and the Client (Service Requester). The actual implementation of the Web Service Interface
is realized by employing the Java–based APACHE AXIS2 technology, and the Web Services are
optimized for the APACHE TOMCAT 7 Web Server.

Figure 20: Example of XML request for the Retinopathy Web Service.

 - <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

- <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <soapenv:Body>

- <evaluateRisk xmlns="http://riskEvaluation">

- <profile>

 <ns1:ID xmlns:ns1="http://patientProfile">Example</ns1:ID>

- <ns2:attributes xmlns:ns2="http://patientProfile">

<ns2:name>treatment</ns2:name>

 <ns2:value>1.0</ns2:value>

 </ns2:attributes>

- <ns3:attributes xmlns:ns3="http://patientProfile">

<ns3:name>age</ns3:name>
<ns3:value>25.0</ns3:value>

 </ns3:attributes>

- <ns4:attributes xmlns:ns4="http://patientProfile">

 <ns4:name>sex</ns4:name>

 <ns4:value>0.0</ns4:value>

 </ns4:attributes>

- <ns5:attributes xmlns:ns5="http://patientProfile">

 <ns5:name>ret00</ns5:name>

 <ns5:value>-1.0</ns5:value>

 </ns5:attributes>

- <ns6:attributes xmlns:ns6="http://patientProfile">

 <ns6:name>wpmean</ns6:name>

 <ns6:value>-1.0</ns6:value>

 </ns6:attributes>

- <ns7:attributes xmlns:ns7="http://patientProfile">

 <ns7:name>retlevel</ns7:name>

 <ns7:value>-1.0</ns7:value>

 </ns7:attributes>

- <ns8:attributes xmlns:ns8="http://patientProfile">

 <ns8:name>A1c</ns8:name>

 <ns8:value>-1.0</ns8:value>

 </ns8:attributes>

 </profile>

 </evaluateRisk>

 </soapenv:Body>

 </soapenv:Envelope>

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 44 of 77 DATE 2013-02-28

Figure 21: Example of XML answer from the Retinopathy Web Service.

9.2 Short-term Risk Manager

The main goal of the short-term risk management is to assist providing early detection and possibly
prevention of hypoglycaemic and hyperglycaemic events. At the same time, proper glycaemic
management helps to prevent the development of complications. On the other hand, if the patient has
already some complication, another important goal appears, that is the prevention of the aggravation
of the complication.

Main functions are to achieve these goals the component highly depends on the Care Plan
Component, especially on the risk management plan which defines the necessary monitoring strategy,
including home monitoring, periodic laboratory tests and examinations and quantitative data collection
by questionnaires. The STRM Component monitors if the patient follows the care plan. Moreover it
continuously analyses the collected data in order to detect problems, e.g. harmful patterns in the blood
glucose levels or short-term risks related to the complications.

Input:

- Self-monitoring results

- Care plan

- Treatment (insulin doses injected or number of pills taken)

- lifestyle (diet, exercise, stress)

- complication-specific parameters

Knowledge:

This component requires short-term risk models for blood glucose control and various complications.

Output:

- identified blood glucose trends and patterns

- short-term risk predictions concerning the complications

Figure 22 provides an overview on the internal components of the Short-term risk management.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<evaluateRiskResponse xmlns="http://riskEvaluation">
<evaluateRiskReturn>

<subjectValues>
<subjectValues>1.0</subjectValues>
<subjectValues>21.0</subjectValues>

 […]
</subjectValues>
<survivalFunction>

<survivalFunction>0.95</survivalFunction>
 <survivalFunction>0.90</survivalFunction>

 […]

</survivalFunction>
<timeOfInterest>

<timeOfInterest>2.0</timeOfInterest>
 <timeOfInterest>2.0</timeOfInterest>

 […]
 </timeOfInterest>

 </evaluateRiskReturn>

 </evaluateRiskResponse>

 </soapenv:Body>

 </soapenv:Envelope>

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 45 of 77 DATE 2013-02-28

Figure 22 Short-term Risk Management Component

The following subsections describe how the responsibilities are distributed between the internal
components.

Hypoglycaemic state Number of hypoglycaemic readings and/ or episodes is above a
threshold* in a week

Hyperglycaemic state Number of hyperglycaemic readings is above a threshold in a week

Oscillating state Number of both hypo- and hyperglycaemic readings are above a
threshold

“Somogyi” effect High reading within 12 hours after a hypo

Dawn phenomenon Reading before breakfast is high and no hypo was detected at night

Too high post-meal increase The difference between a pre- and post-meal reading is above a
threshold

Too much increase or
decrease between two meals

The difference of two pre-meal readings is above a threshold (positive
or negative)

Hypo- or hyperglycaemia at a
time of day

The mean of the readings is above or below a threshold at a time of
day (at least three days interval)

Not enough data The patient does not provide measurements according to the
monitoring plan

9.3 Risk Classification Manager

The goal of the component is to assign the patients into one of the risk groups. Four risk groups are
proposed: low, moderate, elevated and high risk group.

The main principles for the classification are the following (for some cases the development of the
exact classification criteria needs further study):

• Patients who already have complications are assigned to one of the two high risk groups.
Those who are currently well controlled and coping well could be assigned to the 3

rd

(elevated) group while those with poorly controlled diabetes and/or poor coping belong to the
highest risk group

• Patients without complications are classified based on their

o Blood glucose control (last HbA1c and self-monitoring results)

o Number of risk factors

o Psychological-mental status (coping, knowledge level)

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 46 of 77 DATE 2013-02-28

Moderate risk
BG fairly well
controlled
More than 2 risk
factors

Risk group Low risk
BG well controlled
Max. 2 risk factors

Good
coping

Bad
coping

Elevated risk
BG poorly controlled
No complications
Bad coping

High risk
BG poorly controlled
Complications
and/or bad coping

Input:

• existing complications

• blood glucose control (HbA1c, self-monitoring trends, patterns)

• risk factors

• coping level

The inputs may be provided by the Data Integration Module.

Knowledge:

This component requires a classification model which describes the rules for classification.

Output:

• Risk class: low/medium/elevated/high

Figure 10 provides an overview on the internal components of the Risk Classification Component.

Figure 23 Risk Classification Component

The following subsections describe how the responsibilities are distributed between the internal
components. This component uses the outputs of the Data Integration Module and the Care Plan. The
outputs can be used by the decision support modules for providing advices.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 47 of 77 DATE 2013-02-28

10 Application Development and Adaptation

APPLICATION DEVELOPMENT

GENERIC

QUESTIONNAIRE DEV.

COMPONENT

APPLICATION nSDK

HIS

INTERFACE

ADAPTERS

DATA MANAGEMENT

MEASUREMENT

MANAGER

CONTEXT DATA

MANAGER

SEMANTIC IR

COMPONENT

DATA

COLLECTION

MANAGER

SERVICE ORCHESTRATION

EVENT

MANAGER

RULE ENGINE

ORCHESTRATION

MANAGER

PATIENT

FEEDBACK

COMPILER

ALERT AND

ALARM

MANAGER

NETWORK MANAGEMENT

EXTERNAL

SERVICES

INTERFACE

ADAPTERS

SECURITY MANAGEMENT

NETWORK

MONITORING

CONFIGURATION

MANAGER

PERFORMANCE

AND FAULT

MANAGEMENT

SECURITY

MANAGER

IDENTITY

MANAGER

P2P

MANAGER

PATIENT’S SPHERE

DEVICE

CONNECTIVITY

P2P

MANAGER

DATA FUSION
NETWORK

MONITORING

CARER’S SPHERE

P2P

MANAGER

SHORT-TERM

RISK MANAGER

LONG-TERM

RISK MANAGER

TYPE 2

DECISION

SUPPORT

TYPE 1

DECISION

SUPPORT

RISK

CLASSIFICATION

MANAGER

CARE PLAN

CONTEXT OBSERVATION

ONTOLOGY

HEALTH

INFORMATION

SYSTEMS

EXTERNAL

RESOURCES

ADAPTER

1

ADAPTER

2

ADAPTER

n

ADAPTER

1

ADAPTER

2

ADAPTER

n

PATIENT

FEEDBACK

FRONTEND

PERSONAL

CLOUD SERVICE

MANAGER

GENERIC DSS DEV.

COMPONENT

10.1 Generic Decision Support Development Component

Decision support can provide several valuable services to the users, e.g. support the physician in the
selection of the most appropriate treatment or give advices concerning the management of the patient,
e.g. suggests modifications to the care plan. These services require the use of knowledge, which can
be represented in a variety of formats.

This generic component supports the development of various decision support modules.

The development of such a decision support (DS) module requires the following elements:

• An interface which supports the specification of the DS module to be developed, including:

o the selection of the knowledge representation type to be used (e.g. rules, decision
tree, guideline) and the definition of the knowledge necessary for the decision making

o the definition of the necessary input parameters (data items), e.g. it can use the
outputs of the Data Integration Module

o the definition of the expected outputs – it can be e.g. advice, diagnosis, prediction

o the selection of the user interface to be used by the DS module

• Data structures for the above elements

• A generator for the construction of the DS module from the above inputs

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 48 of 77 DATE 2013-02-28

The output of the component is a particular decision support module which can be used by the
applications. For example a module may be developed for the analysis of the data collected by
questionnaires and generating conclusions.

Figure 24 provides an overview on the internal components.

Figure 24 Generic Questionnaire development Component

The following subsections describe how the responsibilities are distributed between the internal
components.

10.2 Generic Questionnaire Development Component

This component provides a generic framework for the development of various questionnaires. It will be
used for developing appropriate questionnaires e.g. to collect data about the patients’ diet and
physical activity.

The component’s main elements are the following:

• Interface for the definition of the type of the questionnaire to be developed. It allows the
definition of questions and their relationships, potential answers and their type.

• Interface for the definition of the text generation. It allows the definition of the text generation
rules and the structure of the report. (E.g. it permits to define the classification of the questions
by their importance).

• Questionnaire database for the storage of the above defined questionnaire elements.

• Text generation database for the storage of the above defined components

• Generic user interface to support the questionnaire development process (collection of the
necessary data, generation of the structure of the questionnaire, activation of the
questionnaire interface and its service programs, actualisation/fulfilment of the questionnaire,
testing).

• Generic user interface to support the report generator development process (collection of the
necessary data, development of the report generator structure, activation of the report

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 49 of 77 DATE 2013-02-28

generator interface and its service programs, actualisation/fulfilment of the report generator,
testing).

The output of the component is the questionnaire which can be used by the applications for data
collection.

Figure 25 provides an overview on the internal components.

Figure 25 Generic Questionnaire development Component

The following subsections describe how the responsibilities are distributed between the internal
components.

The data collected by the questionnaires will be managed by a special Qualitative Data Management
Module (QDMM), which collects and integrates the reports of the selected questionnaires.

A special Data Integration Module (DIM) will be responsible for the integration of the summary report
of a questionnaire or the integrated summary report of a set of questionnaires, the specified data from
the EPR and the devices. This module provides a semantically consistent set of mixed (qualitative and
quantitative) data. The DIM may provide the input for the Decision Support Modules and the Risk
Classification and Short-term Risk Management Components.

10.3 Interface Adapters

The purpose of all Interface Adapters is to specifically assist in the device specific services that can be
integrated with external services, such as knowledge extraction, accessing an EPR or providing
feedback to a carer, merged with workflow and resource scheduling services and supplied with
security model and authentication services.

Further, it will make health information from outside the REACTION platform accessible.
Comprehensive physiological models can be access via web interfaces and the result fed back to the
physician responsible for the case. General medical and clinical information in the open internet can
be semantically queried and the results put together in a comprehensive report on risk assessment,
which will be personalised and presented to the patient in the self-management scheme.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 50 of 77 DATE 2013-02-28

This will support the new models of business constellations that will be explored in the REACTION
project. These include private public partnerships, collaboration pharmaceutical companies as
innovation drivers and bringing together payers, providers and patients in new constellations. Interface
Adapters will show how to share proprietary information across organisational barriers, involve and
transform the patient from a passive health information provider to an active information user, and safe
handling of the massive flow of information and intellectual property rights to healthcare information.

Main functions are:

• Providing interfaces to access internal existing information systems

• Providing interfaces to access and communicate with external systems and services, such as
cloud-based services.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 51 of 77 DATE 2013-02-28

11 Summary

In this deliverable we have summarised the components and tools that constitutes the REACTION
Software Developer Kit. It includes all the different components and managers that interplay in order to
fulfil the orchestration of services as means to support cost-effective development of a broad range of
innovative healthcare applications. The REACTION SDK demonstrate how applications can be built
on top of the REACTION platform’s integrated approach to improved long term management of
diabetes through continuous blood glucose monitoring, monitoring of significant events, monitoring
and predicting risks and/or related disease indicators, decision on therapy and treatments, education
on life style factors such as obesity and exercise and, ultimately, automated closed-loop delivery of
insulin.

The REACTION Software Development Kit (SDK) allows developers to rapidly create new networked
applications on the REACTION platform while providing solution developers with a high-level interface
for innovative monitoring applications with embedded intelligence and closed loop feedback
provisioning using the REACTION platform.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 52 of 77 DATE 2013-02-28

Appendix

Table 1 Measurement Manager

Main functions:

• Receive measurements and update database.

• Retrieve different vital signs measurements (e.g. blood Glucose, blood
pressure, weight scale SpO2, etc.) for patient Retrieve different vital signs
measurements for specified time period.

• Provide conversions of measurements to different formats (e.g. ORU to XML
and back).

• Delete measurements.

• Checks measurement so it complies with patient informed consent.

• Acknowledge the received and successful storage of data.

REACTION-70
Processing of multi-parametric clinical and non-clinical data
from different sources.

REACTION-265 The clinical parameters to be measured must be specified. Processed requirements:

REACTION-338
All data entered must be checked for format, consistency
and validity.

Components HL7Parser, Database Manager.

Dependencies P2P Manager, Event Manager, Observation Database, Data Collection Manager

Interface n/a

Table 2 Context Data Manager

Main functions:

• Retrieve context associated with a patient and a set of measurements.

• Receive and store context associated with a patient and environmental data.

• Update context and delete context associated with a patient.

REACTION-82
Contextualized and personalized feedback to patients and
carers.

REACTION-237
Annotation of blood glucose values, especially in inpatient
environment.

REACTION-371 Use of activity patterns for context annotations.

Processed requirements:

REACTION-372 Context of observations.

Components
Database Manager, Context Analyser

Dependencies P2P Manager. Event Manager, SIR, Data Collection Manager, Context Database

Interface n/a

Table 3 Data Collection Manager

Main functions:
• Exchanges basic configuration information with client gateways, e.g. what

devices should be there

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 53 of 77 DATE 2013-02-28

• Adjusts transfer frequency after its performance quality

• Provides transparent communication to and from clients and other
components

• Receive measurement

• Receive context data

• Receive device events and info

• Receive patient info

• Relate measurement to patient

• Relate context to patient

• Publish abnormal device state (events)

• Relate incoming patient info to stored patient

• Keep incoming message queue(s)

• Provide audit trail by logging incoming messages

• Unpacks data fused collections and updates context and measurement
databases accordingly

• Provides client gateway statistics, e.g. number of messages processed per
day.

• Checks with client gateways which devices are active and their QoS.

REACTION-17 Configurable data transfer frequency.

REACTION-141
The user should have choices regarding all data collection
activities concerning his personal data.

REACTION-236 Blood glucose measurements in Inpatient environment.

REACTION-244
The data management and the user interface shall allow the
insertion of specific interfering drugs (including their
dosage). The dosage of insulin shall vary with these drugs.

REACTION-347 Continuous blood glucose monitoring.

REACTION-356 Manual data insertion.

Processed requirements:

REACTION-410 Collecting measured data ("many to one" traffic pattern).

Components
Data Receiver, Data Processor, Message Router, Message Queue, Log Manager,
Event Publisher.

Dependencies Event Manager, Identity Manager, Network and Fault Manager.

Interface n/a

Table 4 Semantic IR Component

Main functions:

• Data base of EPRs – since EPR usually contains data represented in the
form of natural language text,

• The Cochrane archive,

• Archives of guidelines

REACTION-74
Formalization of pre-existing clinical data (semantic
structure).

REACTION-346
Knowledge Discovery from unstructured clinical text
information.

Processed requirements:

REACTION-381
Definition of a common ontology to refer to data, metadata,
interfaces and models.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 54 of 77 DATE 2013-02-28

REACTION-459
Ontologies and data management designed for the storage
and multi-user availability of all relevant information, actions,
treatments, events.

REACTION-463 Context management for clinical (lab) values.

REACTION-467 Semantics based data management

Components GUI, Parser, Semantic Lexicon, Generator of the Meaning Representation, Pre-
search Engine, Search Engine.

Dependencies The component requires access to the repositories where it will perform searches.

Interface n/a

Table 5 Event Manager

Main functions:

• Subscription support allowing clients to subscribe to published events via a
topic-based publish/subscribe scheme

• Publication support allowing client to publish event on topics

• Routing events to subscribed clients

• Event Core manages persistent subscriptions, publication to subscription
matching etc.

• Interfacing to Network Manager (e.g., broadcast-, multicast-, or gossiping-
based dissemination)

• Storing events

• Priorities events

• Retry sending events.

REACTION-24 Logging of events from components.

REACTION-444 6-month clinical checks.

Components GUI, Parser, Semantic Lexicon, Generator of the Meaning Representation, Pre-
search Engine, Search Engine.

Dependencies
P2P Manager, Subscription Manager, Notification Manager, Publication Manager,
Event Core.

Interface

string getSubscriptions()

bool clearSubscriptions(string subscriber)

bool setPriority(string topic, int priority)

bool subscribe(string topic, string endpoint, int priority)

bool subscribeWithHID(string topic, string hid, int priority)

bool unsubscribe(string topic, string subscriber)
Event[] failedNotifies(string topic, string endpoint, bool

clearFailes)

Event[] failedNotifiesWithHID(string topic, string hid, bool

clearFailes)

Table 6 Rule Engine

Main functions:

• Add rule

• Update rule

• Delete rule

• Evaluate rules

• Get rule report

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 55 of 77 DATE 2013-02-28

• Get patient rules

• Associate alarm and alerts with patient rules

REACTION-179 Daily data review by clinicians or Telehealth support team.

REACTION-374 Annual clinical checks.

REACTION-419 Set of event rules.
Processed requirements:

REACTION-425 Set of action rules.

Components IoTDevice

Dependencies Orchestration Manager, Identity Manager, Event Manager.

Interface

void EvaluateRules(System.String IoTEvent);

System.String GetRuleSet();

void ListenToEvents(System.String IoTEvent);

void SetRuleSet(System.String ruleset);

void StopListenToEvents(System.String IoTEvent);

Table 7 Orchestration Manager

Main functions:

• Add orchestration scheme

• Update orchestration scheme

• Delete orchestration scheme

• Start orchestration

• Execute orchestration actions

• Stop orchestration

• Log and notify about orchestration events and actions

• Notify completion of orchestration

• Generate orchestration report

REACTION-23 Clinician generated feedback to patient.

REACTION-202 Setup remote patient monitoring scheme.

REACTION-231
End of process for the diabetic patient in the inpatient
environment.

REACTION-258
Automated transfer of patient related data from the hospital
information system.

REACTION-403
Each entity in the Reaction platform MUST be representable
by a digital identity.

REACTION-404 Workflow Orchestration Manager.

REACTION-441 Basic workflow in Inpatient environment.

Processed requirements:

REACTION-468 Provide regular update of data model for Health Care profile.

Components
Schedule manager, Workflow Execution Manager, Application Service Manager,
Application Device Manager

Dependencies
P2P Manager. Event Manager, SIR, Data Collection Manager, Context Database,
Event Manager, P2P Manager, Identity Manager, Rule Engine

Interface n/a

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 56 of 77 DATE 2013-02-28

Table 8 Alert and Alarm Handler

Main functions:

• Add orchestration scheme

• Update orchestration scheme

• Delete orchestration scheme

• Start orchestration

• Execute orchestration actions

• Stop orchestration

• Log and notify about orchestration events and actions

• Notify completion of orchestration

• Generate orchestration report

REACTION-160 Alerts for the annual and 6-month clinical checks.

REACTION-161 Alarm system- reminder to perform measurements.

REACTION-193 Alarm & alert generation.

REACTION-217 Acquired values in the alarm range.

REACTION-380 Set of alerts and reminders.

Processed requirements:

REACTION-448
Alert / notification messages should be short enough in order
to be delivered as SMS messages if necessary.

Components n/a

Dependencies Event Manager, Rule Manager.

Interface n/a

Table 9 P2P Manager

Main functions:

• Creates and overlay P2P network, where all the IoT-enabled devices appear
directly interconnected, no matter if they are behind a NAT (Network
Address Translator) or Firewall.

• Provides indirection architecture for addressing Web Services hosted by IoT
devices using the HID addressing mechanism. Each service is identified in
IoT through an HID, which is a global and unique identifier. The P2P
Manager provides interfaces for other managers, applications and IoT
devices for HID creation, modification and deletion. It also offers the
possibility to select the transport protocol for the service invocation between
TCP, UDP and Bluetooth.

• Provides a transport mechanism over the overlay P2P network for invoking
Web Services hosted by IoT devices (SOAP Tunnelling) using the HID
addressing mechanism. The SOAP messages addressed to an HID are
routed by the P2P Manager through the overlay network to the P2P
Manager hosting the service. Therefore, using the SOAP Tunnelling and the
P2P Manager any device or application is able to transparently publish and
consume services anywhere, anytime, breaking the network interconnectivity
barriers and independently of the service endpoint location.

• Provides a transport mechanism over the overlay P2P network for
multimedia content exchange between UPnP AV or DLNA devices.

• Provides session management mechanisms between HIDs during service
invocations.

• Provides time reference synchronization between different P2P Managers.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 57 of 77 DATE 2013-02-28

• Provides a status page for developers, which the developer can use for
monitoring dynamic information about the Internet-of-Things Network and
the HIDs available.

REACTION-1 Internet communication between patient home and
primary/secondary healthcare structures based on public
wired or wireless network.

REACTION-28 Network interoperability.

REACTION-172 Automatic transmission of glucose values from POCT system
to REACTION platform (time-critical!).

REACTION-173 Platform should allow ubiquitous access to end-users and
sharing of information among caregivers (multiuser access to
relevant data).

REACTION-354 Data/messages exchanged between the Reaction Host Client
and the Reaction Device Hosting Server MUST be authentic
(message authentication), with integrity, and confidential.

REACTION-414 Communication between the Reaction Hosting Client and the
Reaction Device Hosting Server MUST be authentic (entity
authentication), with integrity, and confidential.

REACTION-451 In-hospital prototype communication with REACTION
platform.

Processed requirements:

REACTION-453 Communication interface between REACTION Client and
REACTION Server.

Components
Routing Manager, Session Manager, HID Manager, Time Manager, Backbone
Manager, SOAP Tunnelling, SecurityLibrary

Dependencies
P2P Manager. Event Manager, SIR, Data Collection Manager, Context Database,
Event Manager, P2P Manager, Identity Manager, Rule Engine

Interface

eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.[static
initializer] () [static, package]

void eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.init ()

Instantiates the network manager submanagers and registers the servlets.

void eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.activate
(ComponentContext context) [protected]

Activate method.

Parameters:

context the bundle's execution context

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.deactivate

(ComponentContext context) [protected]

Deactivate method.

Parameters:

context the bundle's context

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.bindTrustMa

nager (TrustManager trustManagerService) [protected]

Binds the Trust Manager.

Parameters:

trustManagerService the Trust Manager to bind.

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.unbindTrust

Manager (TrustManager trustManagerService) [protected]

Unbinds the Trust Manager.

Parameters:

trustManagerService the Trust Manager to unbind

void

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 58 of 77 DATE 2013-02-28

eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.bindInsideSe

curity (InsideHydra insideHydraSecurity) [protected]

Binds InsideHydraSecurity.

Parameters:

insideHydraSecurity to use

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.unbindInside
Security (InsideHydra insideHydraSecurity) [protected]

Unbinds InsideHydraSecurity.

Parameters:

insideHydraSecurity to use

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.cryptoBind
(CryptoManager cryptoManagerService) [protected]

Binds the Crypto Manager.

Parameters:

cryptoManagerService the Crypto Manager to bind

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.cryptoUnbind
(CryptoManager cryptoManagerService) [protected]

Unbinds the Crypto Manager.

Parameters:

cryptoManagerService the Crypto Manager to unbind

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.addTransport
(ServiceReference transportRef) [protected]

Adds a transport.

Parameters:

transportRef the transport to add

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.deleteTransp
ort (ServiceReference transportRef) [protected]

Deletes a transport.

Parameters:

transportRef the transport to delete

HashMap
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getTransport
s ()

Gets the list of transports.

Returns:

the list of transports

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.bindRemote

WSClientProvider (RemoteWSClientProvider wsclientProvider) [protected]

Binds a remote WS Client Provider.

Parameters:

wsclientProvider the remote WS client provider to bind

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.unbindRemot

eWSClientProvider (ServiceReference transportRef) [protected]

Unbinds a remote WS Client Provider.

Parameters:

transportRef the transport

Dictionary
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getConfigurat
ion ()

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 59 of 77 DATE 2013-02-28

Gets the configuration.

Returns:

the configuration

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.setConfigurat
ion (String key, String value)

Sets the configuration.

Parameters:

key key value

value value value

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.configuration
Bind (ConfigurationAdmin cm) [protected]

Binds a configuration.

Parameters:

cm the configuration admin

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.configuration
Unbind (ConfigurationAdmin cm) [protected]

Unbinds a configuration.

Parameters:

cm the configuration admin

ComponentContext
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getContext ()

Gets the context.

Returns:

the context

CryptoManager
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getCryptoMa
nager ()

Gets the Crypto Manager.

Returns:

the Crypto Manager

InsideHydra
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getSecurityLi
brary ()

HIDManagerApplication
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDMana
gerApplication ()

Gets the HID Manager Application.

Returns:

the HID Manager Application

PipeSyncHandler
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getPipeSync
Handler ()

Gets the pipe synchronization handler.

Returns:

the pipe synchronization handler

void eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.stop ()

Stop.

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.startNM ()

Returns:

"OK"

Deprecated:

String

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 60 of 77 DATE 2013-02-28

eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.stopNM ()

Returns:

""

Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.openSession
(String senderHID, String receiverHID)

It allows opening a session between two HIDs for data exchange. A session will be
established between the senderHID and the receiverHID. The sessions by default
expires 60000 milliseconds.

Parameters:

senderHID The HID of the sender

receiverHID The HID of the receiver

Returns:

The session identifier (uuid) for the generated session

NMResponse
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.sendData
(String sessionID, String senderHID, String receiverHID, String data) throws
RemoteException

Sends data.

Parameters:

sessionID the session id

senderHID the sender HID

receiverHID the receiver HID

data the data to send

Returns:

the NM response

Deprecated:

Use SOAP tunneling instead

NMResponse
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.receiveData
(String sessionID, String senderHID, String receiverHID, String data) throws
RemoteException

Receive data.

Parameters:

sessionID the session id

senderHID the sender HID

receiverHID the receiver HID

data the data

Returns:

the NM response

Deprecated:

Use SOAP tunneling instead

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.closeSession
(String sessionID)

It allows to close a session using a session identifier. If the session is not closed, it
will be closed after the expiration time (by default 60000 millisecond)

Parameters:

sessionID The session identifier.

java.lang.String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getSessionP
arameter (String sessionID, String key)

This method allows to get stored data in the session object.

Parameters:

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 61 of 77 DATE 2013-02-28

sessionID The sessionID of the session where the data is stored

key The key for the requested parameter

Returns:

The value of the requested parameter or null if the sessionID or the parameter
doesn’t exist.

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.setSessionP
arameter (String sessionID, String key, String value)

This method allows to store data (key-value pair) in a session object.

Parameters:

sessionID The sessionID of the session where the data will be stored.

key The key on which the data will be stored.

value The data to be stored

java.util.Vector
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.synchronizeS
essionsList (String senderHID, String receiverHID)

Operation to synchronize the clientSessionsList with the serverSessionsList of this
Network Manager.

Parameters:

senderHID The HID of the client that need to synchronize its clientSessionsList
with the

 serverSessionsList of this Network Manager

receiverHID The HID of the server HID

Returns:

A vector that contains the sessionID to be deleted

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.addSessionR
emoteClient (String sessionID, String senderHID, String receiverHID) throws
RemoteException

Parameters:

sessionID the session ID

senderHID the sender HID

receiverHID the receiver HID

Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createHID
(long contextID, int level)

Operation to create an HID with a predefined contextID and level It calls the HID
Manager for creating the HID and it will be added to the idTable

Parameters:

contextID The desired context ID to be created

level The desired level

Returns:

The String representation of the HID

Deprecated:

This method will be deleted in the next release

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createHID ()

Operation to create an HID without any context It calls the Identity Manager for
creating the HID and it will be added to the idTable

Returns:

The String representation of the HID

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createHIDwD
esc (long contextID, int level, String description, String endpoint) throws
RemoteException

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 62 of 77 DATE 2013-02-28

Operation to create an HID with a predefined contexID and level and providing a
description for the HID (searching purposes) and the endpoint of the service behind it
(for service invocation)

Parameters:

contextID The desired context ID to be created

level The desired level

description The description associated with this HID

endpoint The endpoint of the service (if there is a service behind)

Returns:

The String representation of the HID

Deprecated:

It is better to use from now createCryptoHID(String xmlAttributes, String
endpoint)

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createHIDwD
esc (String description, String endpoint) throws RemoteException

Operation to create an HID providing a description for the HID (searching purposes)
and the endpoint of the service behind it (for service invocation).

Parameters:

description The description associated with this HID

endpoint The endpoint of the service (if there is a service behind)

Returns:

The String representation of the HID.

Deprecated:

It is better to use from now createCryptoHID().

CryptoHIDResult
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createCrypto
HID (String xmlAttributes, String endpoint)

Operation to create a crypto HID providing the persistent attributes for this HID and
the endpoint of the service behind it (for service invocation). The crypto HID is the
enhanced version of HIDs, that allow to store persistent information on them (through
certificates) and doesn't propagate the information stored on it. In order to exchange
the stored information, the Session Domain Protocol is used. It returns a certificate
reference that point to the certificate generated. The next time the HID needs to be
created, using the same attributes, the certificate reference can be used.

Parameters:

xmlAttributes The attributes (persistent) associated with this HID. This attributes are
stored inside the certificate and follow the Java java.util.Properties xml schema.

endpoint The endpoint of the service (if there is a service behind).

Returns:

A eu.linksmart.network.ws.CrypyoHIDResult containing String representation of

the HID and the certificate reference (UUID)

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createCrypto
HIDfromReference (String certRef, String endpoint)

Operation to create an crypto HID providing a certificate reference (from a previously
created cryptoHID) and an endpoint The crypto HID is the enhanced version of HIDs,
that allow to store persistent information on them (through certificates)

Parameters:

certRef The certificate reference from a previously generated cryptoHID.

endpoint The endpoint of the service (if there is a service behind).

Returns:

The String representation of the HID.

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.renewHID
(long contextID, int level, String hid)

Renews an HID

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 63 of 77 DATE 2013-02-28

Parameters:

contextID the context ID

level the level

hid the HID to renew

Returns:

the HID renewed

Deprecated:

boolean
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.renewHIDAttr
ibutes (String ownerUUID, String hid, String newXMLAttributes) throws
RemoteException

Operation to modify the attributes associated with an HID. This method provides the
means for HID owners to modify the attributes associated with an already generated
HID. In order to avoid security threats, the requester has to provide the unique
ownerID that is associated with this HID. This ownerID is given to the HID creator in
the HID creation response (still to be implemented).

Parameters:

ownerUUID The owner UUID associated with the HID. For now, use
just the HID

hid The HID to be modified

newXMLAttributes The new attributes following the properties format. See

createCryptoHID

for more information about the format of this attributes.

Returns:

The result of the operation in boolean format. Returns false if the HID could not be

found or the ownerID is not valid.

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.renewHIDInf
o (String description, String endpoint, String hid) throws RemoteException

Operation to renew the information associated with an HID (description or endpoint).
It can be used for example, to change the transport protocol for service invocation.

Parameters:

description The new descritpion (or null if no change is required)

endpoint The new endpoint of the service (or null if no change is required)

hid The hid on which the change is requested

Returns:

The String representation of the HID.

boolean
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.renewHIDEn
dpoint (String ownerUUID, String hid, String endpoint) throws RemoteException

Operation to change the endpoint associated with this HID. This allows protocol
switching or any application that wants to modify dynamically the endpoint on which
the service invocations will be forwarded

Parameters:

ownerUUID The owner UUID associated with the HID. For now, use just the
HID

hid The HID on which the endpoint needs to be modified

endpoint The new endpoint for this HID

Returns:

The result of the operation in boolean format. Returns false if the HID could not be

found or the ownerID is not valid.

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.addContext
(long contextID, String hid)

Adds a context

Parameters:

contextID the context HID

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 64 of 77 DATE 2013-02-28

hid the HID

Returns:

the context.

Deprecated:

java.util.Vector
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDs ()

Operation to retrieve all HIDs in the LinkSmart P2P network

Returns:

A java.util.Vector containing all the HIDs in the LinkSmart Network

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDsAsStr
ing () throws RemoteException

Operation to retrieve all HIDs in the LinkSmart P2P network in String format

Returns:

A String containing all HIDs in the LinkSmart P2P network, separated by commas.

java.util.Vector
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHostHIDs
()

Operation to retrieve the HIDs associated with this Network Manager (local HIDs)

Returns:

A java.util.Vector containing all the local HIDs of this Network Manager.

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHostHIDs
AsString () throws RemoteException

Operation to retrieve the HIDs associated with this Network Manager (local HIDs) in
String format

Returns:

A String containing all the local HIDs of this Network Manager, separated by

commas.

java.util.Vector
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getContextHI
Ds (String contextID, String level)

Get the context HIDs

Parameters:

contextID the context ID

level the level

Returns:

the list of context HIDs

Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getContextHI
DsAsString (String contextID, String level) throws RemoteException

Get the context HIDs in string format

Parameters:

contextID the context ID

level the level

Returns:

the list of context HIDs in string format

Deprecated:

Vector
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDsbyDe
scription (String description) throws RemoteException

Operation to retrieve all HIDs in the LinkSmart P2P network that match a description.

The description allows inexact matches using magic characters

For example:

getHIDsbyDescription("Network*") -> Will return all the HIDs with description starting

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 65 of 77 DATE 2013-02-28

with Network getHIDsbyDescription(*Peter'sPortable*") -> Will return all the HIDs with
description containing Peter'sPortable

Parameters:

description The description to match against

Returns:

A java.util.Vector containing all the HIDs in the LinkSmart Network that match the

given description

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDsbyDe
scriptionAsString (String description) throws RemoteException

Operation to retrieve all HIDs in the LinkSmart P2P network (in String format) that

match a description. The description allows inexact matches using magic characters

For example:

getHIDsbyDescription("Network*") -> Will return all the HIDs with description starting
with Network getHIDsbyDescription(*Peter'sPortable*") -> Will return all the HIDs with
description containing Peter'sPortable

Parameters:

description The description to match against

Returns:

A String containing all the HIDs in the LinkSmart P2P network that match the

description

String []
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHostHIDs
byDescription (String description) throws RemoteException

Operation to retrieve all HIDs in the LinkSmart P2P network (in String format) that

match a description. The description allows inexact matches using magic characters

For example:

getHIDsbyDescription("Network*") -> Will return all the HIDs with description starting
with Network getHIDsbyDescription(*Peter'sPortable*") -> Will return all the HIDs with
description containing Peter'sPortable

Parameters:

description The description to match against

Returns:

A java.lang.String[] containing all the HIDs in the LinkSmart P2P network that

match the description

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHostHIDs
byDescriptionAsString (String description) throws RemoteException

Operation to retrieve all HIDs in the LinkSmart P2P network (in String format) that

match a description. The description allows inexact matches using magic characters

For example:

getHIDsbyDescription("Network*") -> Will return all the HIDs with description starting
with Network getHIDsbyDescription(*Peter'sPortable*") -> Will return all the HIDs with
description containing Peter'sPortable

Parameters:

description The description to match against

Returns:

A String containing all the HIDs in the LinkSmart P2P network that match the

description (separated by commas)

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getDescriptio
nbyHID (String hid) throws RemoteException

Method to retrieve the description associated with a given hid.

Parameters:

hid The hid

Returns:

A String with the description associated with the requested hid

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 66 of 77 DATE 2013-02-28

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getIPbyHID
(String hid) throws RemoteException

Method to retrieve the ip associated with a given hid.

Parameters:

hid The hid

Returns:

A String with the ip associated with the requested hid

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getEndpointb
yHID (String hid) throws RemoteException

Method to retrieve the endpoint associated with a given hid.

Parameters:

hid The hid

Returns:

A String with the endpoint associated with the requested hid

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHostHIDE
ndpoint (String hid) throws RemoteException

Get the Host HID endpoint

Parameters:

hid the HID

Returns:

the Host HID endpoint

Deprecated:

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.removeHID
(String hid)

Operation to remove an HID from the Network Manager

Parameters:

hid the HID to remove Network

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.removeAllHI
D ()

Removes all HIDs Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getNMPositio
n () throws RemoteException

Gets the NM position

Returns:

last know NM position

Exceptions:

RemoteException

Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getNMPositio
nAuth (String in0) throws RemoteException

Parameters:

in0 deprecated

Exceptions:

RemoteException

Returns:

the NM position auth

Deprecated:

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getInformatio

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 67 of 77 DATE 2013-02-28

nAssociatedWithHID (String senderHID, String receiverHID)

This method exchanges certificates between two HIDs.

As a result of this method, two entries will be added to the CryptoManager's keystore:

1. the certificate of receiverHID 2. a symmetric key that can be used by the Inside
LinkSmart module for subsequent communication. The certificate that has been
stored in the CryptoManager can be referenced using the return value of this method.

Parameters:

senderHID Your own HID.

receiverHID The target's HID.

Returns:

a String, representing different Attributes that could be retrieved from the
receiverHID's certificate.

String []
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDByAttri
butes (String requesterHID, String requesterAttributes, String query, long
maxTime, int maxHIDs)

This method searches the LinkSmart Network for the HIDs that contain attributes
matching the query. The format of the queries is as follows:

(key1=cond1)&&(key2=cond2*)...

The developer can also use the magic character (*) for inexact queries. Due to this,
the number of HIDs matching the query might be greater than one. Thus, the
developer can specify the number of HIDs that will be returned and the maximum
time to wait for resolving the query. For example, if maxTime = 60000 ms and
maxHIDs = 4 the result of the query will be returned when the Network Manager gets
4 (or more) HIDs that match the query or when maxTime expires.

The allowed values for maxTime are 0 (search only locally) - 60000 (ms) and for
maxHIDs 0 (best effort) - maxInt *

Parameters:

requesterHID Your own HID.

requesterAttributes The target's HID.

query Query for HID attributes:

(key1=cond1) && (key2=cond2*)... * = non-exact match

maxTime Maximum time to wait for query resolution in ms

maxHIDs Maximum number of HIDs to return

Returns:

a String, with the resulting HID separated by blank spaces (0.0.0.1 0.0.0.2 ...)

String
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.getHIDByAttri
butesAsString (String requesterHID, String requesterAttributes, String query, long
maxTime, int maxHIDs)

This method searches the LinkSmart Network for the HIDs that contain attributes
matching the query. The format of the queries is as follows:

(key1=cond1)&&(key2=cond2*)...

The developer can also use the magic character (*) for inexact queries. Due to this,
the number of HIDs matching the query might be greater than one. Thus, the
developer can specify the number of HIDs that will be returned and the maximum
time to wait for resolving the query. For example, if maxTime = 60000 ms and
maxHIDs = 4 the result of the query will be returned when the Network Manager gets
4 (or more) HIDs that match the query or when maxTime expires.

The allowed values for maxTime are 0 (search only locally) - 60000 (ms) and for
maxHIDs 0 (best effort) - maxInt *

Parameters:

requesterHID Your own HID.

requesterAttributes The target's HID.

query Query for HID attributes:

(key1=cond1) && (key2=cond2*)... * = non-exact match

maxTime Maximum time to wait for query resolution in ms

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 68 of 77 DATE 2013-02-28

maxHIDs Maximum number of HIDs to return

Returns:

a String, with the resulting HID separated by blank spaces (0.0.0.1 0.0.0.2 ...)

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.setTrustThre

shold (double trustth) [protected]

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.setTrustMan
ager (String url) [protected]

void
eu.linksmart.network.impl.NetworkManagerApplicationSoapBindingImpl.createSecure
Session () [private]

Table 10 Performance and Fault Management

Main functions:

• Classify traffic and track network traffic usage

• Track network bandwidth utilization

• Identify performance and security issues

REACTION-25 Fault tolerance to network malfunctioning.

REACTION-60 Restore from malfunctioning.

REACTION-134 Any interface between an end-user and the platform shall
have a reasonable maximum response time in condition of
public network optimally working.

REACTION-136 The platform shall cater for 20 simultaneous users in the
field trials. In the end product this number is expected to
grow to 100.

Processed requirements:

REACTION-165 Error Messages.

Components Traffic Sniffer, Traffic Analyzer, Report Engine, Db Storage

Dependencies n/a

Interface n/a

Table 11 Network Monitoring

Main functions:

• The first functional area involves the initialization of the android devices in
the REACTION network. This entails an automatic configuration process
which is controlled by the REACTION backend (an Edge Monitoring Node,
or EMN, to be precise) and during which the device obtains information that
is necessary to start communicating with the REACTION backend, e.g. a
unique identifier, a description of the information to be periodically
transmitted, etc.

• The second area involves the action of broadcasting status updates by the
android devices operated either at the patient’s premises or the hospital
wards.

• The last functional area is the periodic polling from the monitoring server in
order to collect the status for the various devices in the network. Each
function includes complementary actions, such as retrieving the status of
each device from the underlying OS, storing the status in a database at the
monitoring server, etc.

REACTION-18
Monitoring devices must be discoverable by existing network
infrastructure.

Processed requirements:

REACTION-358 Network manager for hosting client.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 69 of 77 DATE 2013-02-28

REACTION-54 Network & system monitoring.

REACTION-89 Network management subsets.

REACTION-94
Availability: Patient data and other resources must be
available to ensure proper treatment.

REACTION-127 Home and mobile gateway.

REACTION-168 Remote Patient Monitoring.

Components
Android devices (Application Hosting Devices - AHDs), Edge Monitoring Nodes
(EMNs), A Central Monitoring Node (CMN)

Dependencies n/a

Interface n/a

Table 12 Security Manager

Main functions:

• Authenticate users of components

• Decrypt incoming messages / encrypt outgoing messages, if necessary

• Control access to components

REACTION-45 Protection against threats.

REACTION-91 Authenticity: Processors of information should be able to
determine whether the data being processed is authentic.

REACTION-92 Integrity: Information, in particular health data, must be
protected from any kind of unintended changes during
transport.

REACTION-100 Access control: Access to sensitive information should only
by given to authorised personnel.

REACTION-109 Scalability: the security must not materially impact the
performance of the system.

REACTION-115 Transparency: Security configuration should be hidden from
the user as far as possible.

REACTION-116 Availability of security mechanisms to manage sensitive
data.

REACTION-118 Assurance: the architecture and its implementation must
provide assurance that it delivers the security and
compliance properties it promises.

REACTION-145 The user must consent to the collection of personal data
whenever possible. > moved from Data Collection Manager!

REACTION-325 The possibility to manage user's account by username and
password and secure log in and log out.

REACTION-339 Communication between the Reaction Device Hosting
Server and the patient's/GP's web browser MUST be
authentic (entity authentication), with integrity, and
confidential.

REACTION-385 Digital identities for the Reaction platform MUST only be
issued or revoked by trusted (third) parties, e.g., a
certification authority (CA).

Components Library (Jar), Framework Module, Web Service Proxy, TLS engine

Dependencies
Developer of Component, Web Service Framework being used, Trust Model
employed for component hosts, Web Server type

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 70 of 77 DATE 2013-02-28

Interface n/a

Table 13 Identity Manager

Main functions:

• Create new user.

• Update user.

• Delete user.

• Assign role.

• Add password.

• Change password.

REACTION-35 Usage Data (Information about elder and juvenile usage of
the platform and resources shall be available).

REACTION-44 Protection against unintended user actions.

REACTION-90 Identifiability: Recipients and senders of information must be
identifiable, though not necessarily personally identifiable.

REACTION-93 Confidentiality: Sensitive information must not be readable
by unauthorised persons.

REACTION-99 Authorisation: Stakeholders must be authorised before they
are allowed to perform relevant actions.

REACTION-175 Automated identification of users (caregivers) working with
REACTION front-end in the hospital.

REACTION-197 Care spaces in the outpatient environment.

REACTION-246 Multi-user availability and display of the fever chart.

REACTION-326 The registration of the enrolled patient on to the system shall
be accured manually by the Care giver at the Primary Care.

REACTION-336 Patient enrolment (or recruitment).

REACTION-341 Roles MUST be defined for stakeholders of the Reaction
platform, e.g., doctor, nurse, patient, informal carer,
administrative personnel etc.

REACTION-343 Every person represented in the Reaction platform MUST be
assigned to one or more roles.

REACTION-376 Integrity check for the stored data.

REACTION-415 Each person MAY only perform actions permitted by her
role.

Processed requirements:

REACTION-437 Each role MUST be assigned to a set of permissible actions.

Components n/a

Dependencies Security Manager, HID Manager Component

Interface n/a

Table 14 IoTDevice

Main functions:

• Maps requests to device services

• Generates responses

• Advertising IoT device descriptions

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 71 of 77 DATE 2013-02-28

• Advertises device services

REACTION-6 Any REACTION device should have an associated semantic
model (description).

REACTION-125 Portable device should collect also additional environmental
measurements.

REACTION-334 Devices should be able to operate anywhere in the home.

Processed requirements:

REACTION-401 Device specialization.

Components Library (Jar), Framework Module, Web Service Proxy, TLS engine

Dependencies IoT Device Manager

Interface

System.String GetIoTID ()

Returns the IoTID for the device.

Returns:

The HID of the device

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetStatus ()

Returns the status for the device.

Returns:

The status of the device

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetProperty (System.String Property)

Returns a property of the device. A developer can choose any properties he like to
use and set.

Parameters:

property A valid property name (valid XML element name)

Returns:

The value of the property

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.Boolean GetHasError ()

Tells if the device has an error.

Returns:

True if error, false otherwise

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetErrorMessage ()

Returns an errormessage for the device.

Returns:

Latest errormessage

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetPhysicalDiscoveryInfo ()

Returns the physical discovery information that is associated with the device.

Returns:

An XML string

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetIoTDeviceXML ()

Returns the device model XML for the IoT Device.

Returns:

the device model XML in SCPD format

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

System.String GetDACEndpoint ()

Returns the endpoint of the DAC that has discovered the device.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 72 of 77 DATE 2013-02-28

Returns:

The endpoint of the current DAC

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

void SetIoTID (System.String IoTID)

Sets the IoTID for the device.

Parameters:

IoTID The valid IoT ID

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

void SetStatus (System.String Status)

Sets the status for the device.

Parameters:

Status A status value choosen by the developer

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

void SetProperty (System.String Property, System.String Value

Sets a property of the device. A developer can choose any properties he like to use
and set.

Parameters:

property A valid property name (valid XML element name)

value The value of the property

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

void StartDevice ()

Starts the device.

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

void StopDevice ()

Stops the device, which will cause it to be removed from its current DAC. The device
can later be re-started.

Implements IoTWCFServiceLibrary::IIoTDeviceWSService .

Table 15 Medical Device

Main functions:

• Receive measurement from physical device

• Send measurement to server side or other modules

• Receive events from physical device

• Propagate events to Event Manager

• Get observation as plain ORU or XML ORU

REACTION-3 Support for IEEE medical device standards.

REACTION-124 Portable device should collect all the relevant vital signs
measured on the patient.

REACTION-180 Measurement of glucose should be specific and the glucose
sensor should be able to monitor glucose in complex media.

Processed requirements:

REACTION-207 ePatch communication.

Components Library (Jar), Framework Module, Web Service Proxy, TLS engine

Dependencies IoT Device Manager, Orchestration Manager.

Interface

System.String GetLatestObservationTime()

Returns a timestamp of the latest stored observation

System.String GetListOfObservations(System.Int32 numberOfObservations)

Returns a collection of observation. The quantity of observations it set by the parameter
numberOfObservation.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 73 of 77 DATE 2013-02-28

System.String GetMsh()

Returns the MSH segment set for the latest HL7 ORUR01 message.

System.String GetObservation()

Returns the observation made in HL7 ORUR01 format.

System.String GetObservationXml()

Returns the observation made in XML format.

System.String GetPatientID()

Returns the PID segment set for the latest HL7 ORUR01 message.

void SetMsh(System.String msh)

Manually set the MSH segment with the parameter msh. XML format support only.

void SetPatientID(System.String patientID)

Manually set the PID segment with parameter patientID. XML format support only.

void SetEquipmentID(System.String equipmentID)

Set the equipment ID given from the device. Should be presented in EUI-64 format.

void SetPatientIdentifier(System.String idNumber, System.String

checkDigit, System.String checkDigitScheme, System.String
assignAuthority, System.String identifierTypeCode)

Populate the patient identifier field in the PID segment.

void SetPatientName(System.String familyName, System.String

givenName, System.String nameTypeCode)

Populate the patient name field in the PID segment

void SetReceivingApplication(System.String namespaceID, System.String

universalID, System.String universalIDType)

Populate the receiving application field in MSH segment

void SetReceivingFacility(System.String namespaceID, System.String
universalID, System.String universalIDType)

Populate the receiving facility field in MSH segment

void SetSendingApplication(System.String namespaceID, System.String

universalID, System.String universalIDType)

Populate the sending application field in MSH segment

void SetSendingFacility(System.String namespaceID, System.String

universalID, System.String universalIDType)

Populate the sending facility field in MSH segment

Table 16 REACTION Test Suite

Main functions:

• Create Medical Devices

• Set a new measurement

• Invoke Medical Device to send a HL7 ORUR01 message

• Test the Medical Device software functionality

• Test server side components that handle

Processed requirements: n/a n/a

Components Microsoft Silverlight

Dependencies Device Connetivity Kit, MeasurementWS

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 74 of 77 DATE 2013-02-28

Interface n/a

Table 17 Data Fusion Engine

Main functions:

• Set data fusion scheme

• Discovery and connect to sub devices

• Collect data

• Listen to device events

• Aggregate and correlate events and observations based on data fusion
scheme.

REACTION-342 Low-level data fusion.

REACTION-365 Data should be stored in proper way in order to be easily
transmitted over mobile networks in case that broadband
network is not available.

Processed requirements:

REACTION-454 Content formatter.

Components n/a

Dependencies IoT Device, Medical Device, Event Manager.

Interface

void AddFusedDevice(System.String devicename, System.String
devicexpath);

System.String GetDataFusionScheme();

System.String GetFusedValue(string name);

System.Int32 GetNumberOfFusedDevices();

void RemoveFusedDevice(System.String devicename);

void SetDataFusionScheme(System.String datafusionscheme);

Table 18 Long-term Risk Manager

Main functions:

• Accept a risk-assessment request as an input: the request should contain

the patient profile and the diabetes complication(s) of interest

• Process the patient data and compute the risk profile, even when some
measurements of the clinical parameters are not provided in the patient
profile (missing information)

• Return the risk-profile as a function of the personalized risk and probability
for developing the complication over time

Processed requirements: REACTION-81 Long-term risk calculation and patient-oriented presentation.

Components Service Core

Dependencies n/a

Interface n/a

Table 19 Short-term Risk Manager

Main functions: • identify blood glucose trends and patterns

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 75 of 77 DATE 2013-02-28

• short-term risk predictions concerning the complications

Processed requirements: REACTION-83
Interface to clinical data from "near" real-time observations
for decision support.

Components Data analysis, Short-term risk models,

Dependencies n/a

Interface n/a

Table 20 Risk Classification Manager

Main functions: • Assist in defining risk class: low/medium/elevated/high

REACTION-86 Estimate short- and mid-term risk and identify successful
therapy schemes for patient groups.

REACTION-153 Symptoms of diabetes or hyperglycaemia.

REACTION-184 Risk values for HbA1c.

REACTION-241 Management of hypoglycaemic episodes in Inpatient
environment.

REACTION-409 Risk assessment models and rules.

Processed requirements:

REACTION-465 Clinical evaluation report.

Components Risk classification engine, Classification model

Dependencies This component uses the outputs of the Data Integration Module and the Care Plan.

Interface n/a

Table 21 Generic Decision Support Development Component

Main functions:

• An interface which supports the specification of the DS module to be
developed, including:

o the selection of the knowledge representation type to be used (e.g.
rules, decision tree, guideline) and the definition of the knowledge
necessary for the decision making

o the definition of the necessary input parameters (data items), e.g. it
can use the outputs of the Data Integration Module

o the definition of the expected outputs – it can be e.g. advice,
diagnosis, prediction

o the selection of the user interface to be used by the DS module

• Data structures for the above elements

• A generator for the construction of the DS module from the above inputs

REACTION-226 Electronic fever/sugar chart should be modelled in the data
management system.

REACTION-227 Initialization of the fever/sugar chart.

REACTION-251 Creation of electronic decision support rules shall be
supported.

REACTION-391 Data fields for the inpatient glucose control prototype
(eDSS).

Processed requirements:

REACTION-466 (Web) Service to present decision support for glucose

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 76 of 77 DATE 2013-02-28

control to clinicians.

Components
Knowledge base, User interface, DS module specification, module generator,
decision support module.

Dependencies n/a

Interface n/a

Table 22 Generic Questionnaire Development component

Main functions:

• Interface for the definition of the type of the questionnaire to be developed. It
allows the definition of questions and their relationships, potential answers
and their type.

• Interface for the definition of the text generation. It allows the definition of the
text generation rules and the structure of the report. (E.g. it permits to define
the classification of the questions by their importance).

• Questionnaire database for the storage of the above defined questionnaire
elements.

• Text generation database for the storage of the above defined components

• Generic user interface to support the questionnaire development process
(collection of the necessary data, generation of the structure of the
questionnaire, activation of the questionnaire interface and its service
programs, actualisation/fulfilment of the questionnaire, testing).

• Generic user interface to support the report generator development process
(collection of the necessary data, development of the report generator
structure, activation of the report generator interface and its service
programs, actualisation/fulfilment of the report generator, testing).

REACTION-126 Portable device should allow patients to complete the
acquired data set with questionnaire or additional
information (status, activity, food intake).

REACTION-330 Ability for the patient to have an access to a library of
diseases with a list of questionnaires which help the patient
to manage his/her lifestyle and disease in a better way.

Processed requirements:

REACTION-349 Patient questionnaires (lifestyle, physio-psychological
conditions, checking medication compliance, adherence to
clinical pathways, education, self-management).

Components
Questionnaire definition interface, Report definition interface, Questionnaire
database, Text generation database, Questionnaire development interface, Report
development interface.

Dependencies
The data collected by the questionnaires will be managed by a special Qualitative
Data Management Module (QDMM), which collects and integrates the reports of the
selected questionnaires.

Interface n/a

Table 23 Interface adapters

Main functions:

• Providing interfaces to access internal existing information systems

• Providing interfaces to access and communicate with external systems and
services, such as cloud-based services.

REACTION-32 The architecture should support the Continua WAN interface
(WAN-IF).

Processed requirements:

REACTION-84 Interface to patients’ health history information from
EPR/HIS.

D5.6 REACTION SDK - Software Development Kit tools REACTION (FP7 248590)

VERSION 1.0 77 of 77 DATE 2013-02-28

REACTION-362 Interface to patient demographic register.

REACTION-363 Interface to Hospital Information System for clinical data

import/export.

REACTION-400 Data/messages exchanged between the Reaction Device
Hosting Server and the EPR/EHR System SHOULD be
authentic (message authentication), with integrity, and
confidential.

REACTION-413 Connection with external services like MS HealthVault and

RunKeeper

REACTION-431 Data/messages exchanged between the Reaction Device

Hosting Server and the GP EPR SHOULD be authentic
(message authentication), with integrity, and confidential.

REACTION-434 Interface to Lab Information System (LIS) for glucose data

import.

Components n/a

Dependencies n/a

Interface n/a

