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Abstract

A significant theoretical advantage of search-
and-score methods for learning Bayesian Net-
works is that they can accept informative
prior beliefs for each possible network, thus
complementing the data. In this paper,
a method is presented for assigning priors
based on beliefs on the presence or absence of
certain paths in the true network. Such be-
liefs correspond to knowledge about the pos-
sible causal and associative relations between
pairs of variables. This type of knowledge
naturally arises from prior experimental and
observational data, among others. In addi-
tion, a novel search-operator is proposed to
take advantage of such prior knowledge. Ex-
periments show that, using path beliefs im-
proves the learning of the skeleton, as well as
the edge directions in the network.

1 INTRODUCTION

One theoretical advantage of the search-and-score ap-
proach to learning Bayesian Networks [Cooper and
Herskovits, 1992] versus the constraint-based approach
[Spirtes et al., 2000] is that the former naturally ac-
cepts priors for each network. Since the number of pos-
sible networks is exponential to the number of nodes,
in a practical setting one has to assign priors in an
implicit way. In this paper, we consider prior beliefs
on the possible paths between variable pairs. Such
paths directly correspond to causal or associative

relations. The joint beliefs on the paths is then em-
ployed to assign a prior on each network.

Causal knowledge naturally derives from prior exper-
imental data while associative knowledge stems from
observational data. For example, consider a dataset D
measuring the average amount of exercise per week E,
calcium in diet C, occurrence of osteoporosis by 60yrs

O and smoking S in a cohort of women. A Bayesian
Network could be induced by any appropriate learning
method. However, if a prior experimental study showed
that increasing the amount of exercise reduces the oc-
currence of the disease, then the knowledge belief that
[E causes (that is, causally affects) O] with probability
p should be incorporated during learning. Similarly, if
a prior cohort study (observational study) has shown
that smoking correlates with reduced exercising, then
knowledge [S and E are associated] with probability p′

should also be included. The belief strengths p and p′

depend on several factors, such as the statistical power
of the study. Notice that the fact [E causes O] does
not correspond to the presence of the edge E → O in
the network: the edge implies a direct causal relation
(in some context of modeled variables) while [E causes
O] does not depend on the context.

Path beliefs are inherently dependent. For exam-
ple, if one believes with certainty that [X causes Y ]
and [Y causes Z], then one has to believe that [X
causes Z] to be consistent. Therefore, one should
consider the joint distribution of the input path be-
liefs, instead of the marginal distributions separately.
However, it is very unlikely that the complete joint
distribution is available. Instead, one could use
the marginal distributions to infer a joint distribu-
tion. However, there are several technical difficul-
ties to consider. For example, assume we are given
P (X causes Y ) = 0.8 and P (Y causes Z) = 0.8 and
wish to compute P (X causes Y, Y causes Z). On one
hand, there may be several choices for the joint given
the same marginal beliefs. In the above scenario we
can infer P (X causes Y, Y causes Z) ∈ [0.6, 1]. On
the other hand, the beliefs maybe incoherent [Hansen
et al., 2000], that is, not extendable to a joint distri-
bution that satisfies the probability axioms.

We present a method that computes a joint distribu-
tion of the path beliefs such that: if the path beliefs
are coherent the joint is the closest to uninformative
priors; if they are incoherent the joint is chosen to be



coherent and induces path probabilities that are close
to the input beliefs. Once the joint is computed, it
can be employed to efficiently compute the prior of a
network. Furthermore, to take advantage of the prior
knowledge, we introduce a novel search-operator.

In simulated proof-of-concept experiments we show
that the new scoring method can indeed take advan-
tage of prior knowledge. When provided with causal
knowledge, it is able to better learn the orientations of
the edges and the causal relations. Informative priors
can also facilitate learning the skeleton of the network.
Finally, we show that the proposed search-operator
significantly improves the quality of the learned model.

There are several other methods that make use of prior
knowledge when learning a network (see [Angelopou-
los and Cussens, 2008] for a review). For example, us-
ing knowledge regarding the parameters of the network
[Niculescu et al., 2006], a causal total order of the vari-
ables [Cooper and Herskovits, 1992], the presence or
absence of directed edges in the network [Meek, 1995]
possibly with beliefs assigned to them [Buntine, 1991,
Robert and Arno, 2000], or a prior network, used to
assign prior probabilities to each network based on the
distance from this network [Heckerman et al., 1995]. In
general, it can be argued that the type of knowledge
the existing methods can incorporate during learning
is not in a form that can be easily acquired. As a
result, uniform - and thus uninformative - priors are
commonly used when learning Bayesian Networks from
data. The problem of incorporating informative priors
while learning is listed in the list of open problems in
a recent causality editorial [Spirtes, 2010].

There also is prior work that specifically considers path
constraints or beliefs. The methods in [Borboudakis
et al., 2011, Borboudakis and Tsamardinos, 2012]
assume one first learns a Markov-Equivalence class
of Bayesian Networks or Maximal Ancestral Graphs
[Spirtes et al., 2000] (a generalization of Bayesian Net-
works that admits hidden variables) from data and
then, path constraints are imposed on the graph. In
contrast, in this work the network is learned with the
help of the prior knowledge. In [O’Donnell et al., 2006]
a method is presented for incorporating beliefs on
paths, but relies on computationally expensive Markov
Chain Monte Carlo (MCMC) simulations. However,
neither the latter, nor any other method dealing with
prior knowledge deals with the issues of dependent and
possibly incoherent beliefs.

2 BACKGROUND

We assume the reader’s familiarity with Bayesian Net-
works [Pearl, 2000, Neapolitan, 2003] and learning al-
gorithms and just briefly review the basic concepts.

Let V be a set of k random variables {Vi}ki=1.
A Bayesian Network (BN) over V is a pair
B = 〈GV ,PV〉, where GV is a Directed Acyclic

Graph (DAG) representing conditional independen-
cies between variables V , and PV is the joint proba-
bility distribution (j.p.d.) of V . The graph and dis-
tribution must be connected by the equation PV =∏

P (Vi|PaG(Vi)), where PaG(Vi) are the parents of Vi

in G. The above equation is equivalent to what is called
the Markov Condition. When the network is fixed
in a context we drop the indexes V ,G from the equa-
tions. The skeleton of a BN G is the undirected graph
which can be constructed by ignoring the orientations
of G. A triple of vertices 〈X,Y, Z〉 is called a collider

in G, if X → Y ← Z is in G. A collider 〈X,Y, Z〉 is
unshielded if X and Z are not adjacent in G. Two
BNs are called Markov equivalent if: (a) they have
the same skeleton, and (b) they have the same set of
unshielded colliders. A Partially Directed Acyclic

Graph (PDAG) (also known as essential graph) is a
graph representing a set of Markov equivalent BNs. It
has the same skeleton as all BN representatives and
an edge is directed if and only if it is invariant in all
BN representatives. A directed path from X to Y
is denoted as X ⇒ Y . We denote as X ⇔ Y the
case where X and Y share a common ancestor in G,
but neither X is an ancestor of Y nor the reverse. A
d-connecting path (given the empty set) between X
and Y exists if either X ⇒ Y , X ⇐ Y , or X ⇔ Y .
The absence of a d-connecting path between X and
Y is denoted as X � Y . In the rest of the paper,
we assume the Faithfulness Condition [Spirtes et al.,
2000] that (together with the Markov Condition) im-
plies that there is a d-connecting path between X and
Y , if and only if the two nodes are statistically associ-
ated (dependent).

Let D be a complete multinomial dataset over vari-
ables V . The probability of a network G over V is
P (G|D) ∝ P (D|G) · P (G). The score of a network
is often obtained by taking the logarithm of P (G|D),
and equals Sc(G|D) = Sc(D|G) + Sc(G) . Bayesian
scoring methods such as K2 [Cooper and Herskovits,
1992] and BDe, BDeu, [Heckerman et al., 1995] try to
approximate the log-likelihood based on different as-
sumptions. When priors are uniform, the term Sc(G)
can be ignored during maximization. In our setting
however, this term may become important.

3 REPRESENTING PATH BELIEFS

For any pair X,Y ∈ V we may have a prior belief
on the possible paths connecting the two nodes in the
network. It is important that we devise cases for such
paths that are mutually exclusive and allow the rep-
resentation of common types of causal and associa-



tive knowledge. This is possible as follows: we define
the path variables ri,j taking values in the domain
{⇒,⇐,⇔,�} with the semantics Vi ⇒ Vj , Vi ⇐ Vj ,
Vi ⇔ Vj , and Vi � Vj respectively. When the specific
nodes Vi, Vj we refer to are not important we will use
a single index: rk. Each variable ri,j has a probability
distribution Πri,j = 〈π⇒, π⇐, π⇔, π�〉 over each pos-
sible value. The input to our method is a set of path
beliefs K = 〈R,Π〉, where R is a set of path variables
and Π the set of probability distributions associated
with them. An example is shown in Table 1a(Top) ex-
pressing the belief that most likely there is a directed
path from X to Y and from Y to Z.

The possible paths between nodes dictate their possi-
ble causal and associative relations. When the BN is
interpreted causally, then X ⇒ Y is equivalent to [X
causes Y ]. In addition, as discussed in the previous
section: X ⇒ Y or X ⇐ Y or X ⇔ Y is equiva-
lent to [X is associated with Y ]. Thus, a distribu-
tion ΠrX,Y

= 〈π⇒, π⇐, π⇔, π�〉 corresponds to beliefs
about the causal and associative relations.

In practice, it is useful to allow the user to spec-
ify prior beliefs directly on the events [X does (not)
cause Y ] and [X is (not) associated with Y ] from
which the distribution ΠrXY

can be derived, than the
opposite. This is not difficult: for example given
P (X causes Y ) = π⇒ the mass of probability 1 − π⇒

has to be distributed in a reasonable way to the other
three values. However, we avoid this belief represen-
tation to simplify the presentation of the method.

4 SCORING PATH BELIEFS

In this section, we derive a score for DAG G given data
D and n path beliefs in K. An important requirement
for the computation of the score is knowledge of a joint
distribution J = P (r1, . . . , rn|Π) = P (R|Π) such that
its marginals correspond to the distributions in Π. We
assume J is already computed; the following sections
describe the details of this computation. The j.p.d. J
stemming from K in Table 1a is shown in Table 1b.

We denote with C (configuration) a given joint instan-
tiation of values to path variables R = 〈r1, . . . rn〉, and
define JC = P (R = C|Π). It is important to notice
that for each graph G the configuration C is uniquely
determined. For example, in the j.p.d. of Table 1b, if
in a graph G X ⇒ Y , Y ⇒ Z and X ⇒ Z hold, then
r = C1. Thus, it makes sense to denote with CG the
joint instantiation of variables R in graph G.

Let G be a DAG and D a dataset over the same vari-
ables. We now compute the probability P (G|D, J):

P (G|D, J) =
P (D|G, J) · P (G|J)

P (D|J)
=

P (D|G) · P (G|J)

P (D|J)

The second equation stems from the fact that given
the graph G the data D are independent of J (J does
not provide any additional information about the data
once the graph is known). The factor P (D|J) is a
normalizing constant that does not need be computed
when we maximize the above equation over different
graphs. In Section 2 we mention several approxima-
tions for computing the factor P (D|G). We now focus
on the prior P (G|J):

P (G|J) =P (G,CG|J) = P (G|J,CG) · P (CG|J) =

P (G|CG) · P (CG|J) = P (G|CG) · JCG

The first equation holds because CG is a function of G.
The factor P (G|CG) is our prior on a graph G given
that a specific configuration holds. Given no other
preference or knowledge we assign the same prior to
all graphs with the same configuration. Let NC be
the number of DAGs over nodes V sharing the same
configuration C. Then P (G|CG) = 1/NCG

and so:

P (G|J) =
JCG

NCG

and Sc(G|J) = log

(
JCG

NCG

)
(1)

The overall score of a graph is then defined as:

Sc(G|D, J) = Sc(D|G) + Sc(G|J) (2)

The score Sc(G|D, J) has two desirable properties:

1. Markov-Equivalent graphs that satisfy the

same path-beliefs obtain the same score.

The last term in the equation above is the
same for graphs sharing the same configuration.
The first term is the same for Markov-equivalent
graphs provided one employs an appropriate scor-
ing function, such as the BDe score [Heckerman
et al., 1995].

2. For uninformative prior beliefs, all graphs

are equiprobable a priori, that is, P (G|J) =
1/N , where N is the number of graphs over nodes
V . With uninformative beliefs we expect to en-
counter a given configuration with probability
equal to the proportion of the graphs satisfying
the configuration, i.e,. JC = NC

N
. In that case,

P (G|J) = NC

N
· 1

NC
= 1

N
and we end up with

uniform priors as we would expect.

While Eq. 1 follows the above two properties, we point
out to the fact that the factor 1/NCG

may seem to pro-
vide counter-intuitive results at a first glance. The rea-
son is that, everything else being equal, higher priors
will tend to be assigned to graphs in “small” configu-
rations, that is, consistent with only a few graphs. If
this is not desirable then one can drop the 1/NC fac-
tor. However, if this score is used in place of Eq. 1
then Property 2 above is not satisfied any more.



Table 1: (a) (Top Part) Path beliefs K for three pairs of nodes. The beliefs are incoherent: P (X ⇒ Y ) = 0.8
and P (Y ⇒ Z) = 0.9 imply that P (X ⇒ Z) ∈ [0.7, 1]. (a) (Bottom Part) Induced coherent beliefs K′ stemming
from K by solving the problem in Eq. 6. (b) A part of the j.p.d. J computed by solving Eq. 6 with input K′.
The number of DAGs with 5 nodes for each configurations NC is also shown. Notice that C2 and C3 have both
zero counts and zero probability, because they are invalid.

(a)

K π⇒ π⇐ π⇔ π�

rX,Y (r1) 0.8 0.132 0.028 0.04
rY,Z(r2) 0.9 0.066 0.014 0.02
rX,Z(r3) 0.6 0.264 0.056 0.08

K
′

π⇒ π⇐ π⇔ π�

rX,Y (r1) 0.764 0.159 0.032 0.045
rY,Z(r2) 0.879 0.082 0.016 0.023
rX,Z(r3) 0.646 0.231 0.051 0.073

(b)

rX,Y rY,Z rX,Z JC NC

C1 ⇒ ⇒ ⇒ 0.6443 2800
C2 ⇒ ⇒ ⇐ 0 0
C3 ⇒ ⇒ ⇔ 0 0
. . . . . . . . . . . . . . . . . .
C49 � ⇒ ⇒ 4.55 · 10−4 1045
. . . . . . . . . . . . . . . . . .
C64 � � � 2.78 · 10−5 309

5 COMPUTING THE NUMBER OF

DAGS NC

The number N of DAGs over nodes V has been solved
in closed-form [Robinson, 1973]. However, to the best
of our knowledge, there is no closed-form for the num-
ber NC of DAGs that satisfy certain path-constraints.
When the number of nodes is small (up to 5-6) one can
enumerate all DAGs and compute each NC by count-
ing. The number of possible DAGs however, grows
exponentially to the number of nodes and complete
enumeration is not an option. In this case, we esti-
mate these counts by sampling a number S of DAGs
uniformly at random. Specifically, we implemented the
recent method in [Kuipers and Moffa, 2013] that, un-
like prior work [Melancon et al., 2000], avoids the use
of expensive MCMC methods. N̂C can be estimated
as N ·SC/S, where SC is the number of sampled DAGs
that conform to configuration C.

When the number of configurations c is large or NC/N
is small, one may never sample any graph consistent
with C, resulting in zero estimates. This may happen
even for small sets of path variables, as c grows ex-
ponentially with the number of path variables n. To
avoid zero estimates, one can apply the Laplace correc-
tion: N̂C = SC+l

S+cl
N , where l is an arbitrary parameter.

We suggest l to be close to zero. Later on we will refer
to this method as FULLl.

In order to get a good estimate of NC using FULLl,
one may have to sample a huge number of DAGs. To
improve upon this we developed another method to
approximate NC . This method is based on the obser-
vation that, often, certain subsets of path variables are
“almost independent”. We exploit this to factorize the
uninformative prior distribution U of each configura-
tion, denoted with UC for configuration C. NC can
then be computed as UC ·N .

5.1 FACTORING THE UNINFORMATIVE

PRIOR DISTRIBUTION U

To give an intuitive understanding of the main idea,
consider the following scenario: we are given two path
variables, rX,Y and rW,Z . Notice that they do not
have any nodes in common. Assume that we fix the
value of rW,Z . Depending on that value, some values
of rX,Y will become more or less likely. For example,
if W � Z holds, the values X ⇒ Y , X ⇐ Y and
X ⇔ Y become less likely since W � Z restricts the
graph to contain fewer edges, effectively reducing the
possibility to form paths between X and Y . On the
other hand, X � Y becomes more likely. To put it for-
mally, UX⇒Y |W�Z < UX⇒Y , UX⇐Y |W�Z < UX⇐Y ,
UX⇔Y |W�Z < UX⇔Y and UX�Y |W�Z > UX�Y .
However, we claim that if the number of nodes V is
sufficiently large, the difference is negligible, or for-
mally that UrX,Y |rW,Z

� UrX,Y
, that is, they are “al-

most independent”. We illustrate this with a simple
example. Assume that V = {X,Y,W,Z}. In this case
it is clear that any value of rW,Z heavily constrains the
graph, since it only contains 4 nodes. If however we
keep adding nodes to V , more and more possibilities
are created to satisfy any value of rX,Y .

Next we show an example with dependent path vari-
ables. We are given the path variables rX,Y and rY,Z .
Notice that Y appears in both path variables. Now
consider the configurations C1 = {X ⇒ Y, Y ⇒ Z}
and C2 = {X ⇒ Y, Y ⇐ Z}. Note that the prior
probability of a directed path between any two nodes is
equal for any pair of nodes. Assuming U can be factor-
ized, UY⇒Z|X⇒Y = UY⇒Z , and UY⇐Z|X⇒Y = UY⇐Z

hold. Because UY⇒Z = UY⇐Z holds, UY⇒Z|X⇒Y =
UY⇐Z|X⇒Y follows. However, given X ⇒ Y , Y ⇒ Z
becomes less likely since there are no DAGs with
Z ⇒ X (acyclicity), which is not the case for Y ⇐ Z.
For example, for V = {X,Y, Z} there are only 2 DAGs



with configuration C1, but 4 DAGs with configuration
C2. Thus U cannot be factorized in this case.

Those scenarios only give a rough and intuitive un-
derstanding of the basic idea. In the next subsection
we will provide experimental results to support our
claims. Before doing so, we will generalize the basic
ideas to any set of path beliefs.

Definition 1. Let R be a set of path variables. We de-
note with VR the set of all nodes appearing in any vari-
able in R. The constraint graph GR = (VR, ER) of
R is an undirected graph, where ER = {X−Y }rX,Y ∈R.

Definition 2. Let R be a set of path variables and P

a partition of R. Let VRi
denote the set of all nodes

appearing in any variable in the i-th part of P, Pi.
P is called an independent partition if ∀Pi,Pj ∈
P, i 
= j,Vi

⋂
Vj = ∅.

Since the parts of an independent partition do not have
any nodes in common, the configuration of a part does
not directly influence any other part; they do however
have an indirect influence through other nodes of the
graph which, as we will see, is negligible. On the other
hand, path variables of the same part do directly affect
each other (see dependent case above).

The independent partition of a set of path variables
R can be computed as follows: (a) construct the con-
straint graph GR of R and, (b) find the connected
components of GR. It is easy to see that the connected
components of GR are an independent partition of R.

It remains to show how to compute U for given set of
path variables R and set of nodes V . First we sample
S DAGs over V uniformly at random. Then we find
an independent partition P of R. UC is factorized as
UC =

∏
i UCi

, where Ci and UCi
denote the configura-

tion and the prior distribution of the i-th part Pi of P
respectively. UCi

is estimated as SCi
/S, where SCi

is
the number of sampled DAGs that conform to configu-
ration Ci in Pi. Finally, N̂C = N ·UC . Again, we rec-
ommend a Laplace correction. Then, N̂C = N · S·UC+l

S+l·c .
We will refer to this method as FACTl.

5.2 EXPERIMENTAL VALIDATION

The first experiment is to determine how FACTl ap-
proximates FULLl, as the number of nodes |V| in-
creases. We denote with UFACTl

and UFULLl
the esti-

mation of U by the methods FACTl and FULLl.

Setup: The number of nodes is varied between 10 and
35, with a step-size of 1. We used three sets of path
variables: R1 = {r1,2, r3,4}, R2 = {r1,2, r2,3, r4,5, r5,6},
and R3 = {r1,2, r2,3, r3,4, r5,6, r6,7, r7,8}. The number
of independent partitions is 2 and each paritition con-
sists of 1,2 and 3 path beliefs for R1, R2 and R3 respec-
tively. The number of valid configurations c is 16, 256

and 1681 for R1, R2 and R3 respectively. The number
of sampled DAGs S was set to 106, sufficiently large
for FULLl to approximate U well. The Laplace cor-
rection parameter l was set to 0, since no correction is
necessary in this case. We used the KL-divergence to
measure the distance between two probability distribu-
tions, with UFULLl

representing the true distribution.

Results: The results are shown in Figure 1a. As
claimed, for a fixed set of path beliefs, UFACTl

ap-
proaches UFULLl

(which should be close to U in this
experiment, as S is large relative to c) as the number
of nodes increases. Similar results are expected with
more and larger independent partitions.

In the second experiment we show that if S is rela-
tively small compared to c, FACTl provides a better
approximation of U than FULLl. This is important
because sampling a large number of DAGs costs time
and memory, essentially setting an upper limit to S
which, if c is relatively large, will result in a poor ap-
proximation of U by FULLl. To show this, one has
to know the exact distribution U . However, as this is
computationally infeasible for large numbers of nodes,
we ran the experiment only for small |V |.

Setup: The number of nodes is |V| = {4, 5, 6}, and
the number of DAGs is 543, 29281 and 3781503 re-
spectively. Because |V| is small, we used only two path
variables R = {r1,2, r3,4}. For each V we sampled be-
tween 100 and 10000 DAGs, with a step-size of 100.
This was done to simulate the case where no access
to the complete set of DAGs is given. The Laplace
correction constant l was set to 1. For each |V| and S
we measured the KL-divergence between UFULLl

and
U , as well as between UFACTl

and U . The experiment
was repeated 1000 times and averages are reported.

Results: The results are shown in Figures 1b to 1d.
When S is small, FACTl provides a better approxima-
tion of U than FULLl. The reason this works is that,
if R is partitioned into multiple sets, each containing
a relatively small number of path variables, their dis-
tributions are easier to approximate.

6 COMPUTING THE J.P.D. J

In this section, we show how to compute the joint
probability distribution J . We denote with πk,j the
probability that rk takes value j ∈ {⇒,⇐,⇔,�}:
πk,j = P (rk = j). The unknown quantities are JC for
each configuration C in J . Let Ck,j = {C, s.t. rk = j},
that is, the set of configurations where variable rk ob-
tains value j. For each k and j we obtain the following
constraints:

πk,j =
∑

C∈Ck,j

JC (3)
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Figure 1: (a) KL-divergence between FULL0 and FACT0 with S = 106 for different sets of path variables. The
distance between FACT0 and the true distribution, approximated by FACT0, decreases as the number of nodes
increases. (b,c,d) KL-divergence between the true distribution and the approximation methods, as the number
of samples S increases. For small S FACT1 provides a better approximation of the true distribution than FULL1.

In other words, the marginals of the j.p.d. should equal
our input path beliefs. Recall that path beliefs are
not independent in general. Thus, it is important to
consider the following constraints, stemming from the
path semantics of the variables R:

JC = 0, when C is invalid (4)

A configuration is invalid if it cannot be satisfied by
any DAG over V , for example, it contains directed cy-
cles. The algorithm to detect invalid configurations
is discussed in Section 6.5. To complete the problem
specification we impose that:

∑
C

JC = 1 and JC ≥ 0 (5)

If constraints in Eqs. 3, 4, 5 can be satisfied then a
j.p.d. adhering to the probability axioms can be found
such that the prior marginal beliefs hold. In this case,
by definition, K is coherent, otherwise it is incoherent.

6.1 THE CASE OF COHERENT BELIEFS

The system of equations contains 4n constraints from
Eq. 3, 1 constraint from Eq. 5 and c = O(4n) un-
knowns. For most typical problems, 4n + 1 � c and
so the system may have infinite solutions. We argue
that one should choose a solution j.p.d. J as close
to the uninformative one as possible. Any other dis-
tribution may introduce bias towards certain configu-
rations, even if the prior knowledge does not suggest
preference over those configurations. In other words,
if the uninformative j.p.d. U is a coherent extension of
the path beliefs, there is no reason to prefer any other
solution over it. A natural, information-theoretic ap-
proach is to select a j.p.d. J that minimizes the KL-
divergence from U . The problem is formulated as:

min
J

DKL(J ‖ U) =
c∑

k=1

Jk · ln
Jk
Uk

, s.t. Eqs. 3, 5 (6)

This optimization problem can be solved accurately
and efficiently with the Iterative Scaling procedure
[Darroch and Ratcliff, 1972, Csiszar, 1975], a general-
ization of the Iterative Proportional Fitting Procedure
(IPFP) [Deming and Stephan, 1940].

6.2 DEALING WITH INCOHERENT

BELIEFS

In the case of incoherent beliefs there is no j.p.d. that
can equal the marginal input beliefs. Instead of re-
questing coherent beliefs or ignoring the incoherency,
we seek for joints with marginals as close as possible
to the user’s input beliefs. To solve this problem, we
implemented the method proposed in [Vomlel, 2004],
called GEMA. GEMA is an extension of IPFP which
converges even with incoherent beliefs. In order to
solve the problem it allows the marginals to change by
a small amount, which is measured with the so-called
I-aggregate criteria. Although GEMA tends to mini-
mize this criteria, no guarantee about its convergence
to a global or local minima is provided. We conducted
some anecdotal experiments and GEMA seems to pro-
duce reasonable results.

Table 1b contains the j.p.d. J stemming from K of
Table 1a(Top) computed by GEMA. For comparison
with the input beliefs K, Table 1a(Bottom) contains
the marginal beliefs K′ implied by GEMA. The val-
ues in Table 1a(Top) and Table 1a(Bottom) are close,
with the latter one representing coherent beliefs. Fig-
ure 2 shows two DAGs with different configurations
obtaining different prior scores.

6.3 FACTORING THE J.P.D. J

The cost of solving Eq. 6 is dominated by the number
of variables c, which can be as high as 4n. In practice,
the optimization problem can not be solved efficiently
(or at all, due to memory limitations) with more than



(a) (b)

Figure 2: We assume the path beliefs K in Table 1a and the corresponding J in Table 1b. (a) The configuration
C1 = {X ⇒ Y, Y ⇒ Z,X ⇒ Z} holds in the graph. For p1 = 0.6443 we obtain the score Sc(G1|J) =
log(0.6443)− log(2800) = −8.3769. (b) The configuration C49 = {X � Y, Y ⇒ Z,X ⇒ Z} holds in the graph.
For p49 = 4.55 · 10−4 we obtain the score Sc(G2|J) = log(4.55 · 10−4)− log(1045) = −14.6471. As expected, G1

has a higher prior than G2 since X ⇒ Y is given a higher probability than X � Y in Table 1a.

10-12 path beliefs. It is obvious that, even in the best
case, one would need at least Ω(c) time and memory,
if the output of the procedure is the full j.p.d. over c.

One natural way to improve upon this is to factorize J .
Unfortunately, in general, it seems that it is not pos-
sible without loss of information. However, as stated
in [Vomlel, 2004], if the uninformative joint distribu-
tion U factorizes with respect to some sets of variables,
then the result of IPFP also factorizes with respect to
the same sets of variables, that is, if ∃{Ri}

k
i=1, Ri ⊆ R

s.t. U =
∏

Ri
URi

then J =
∏

Ri
JRi

. Thus, if we use
FACTl instead of FULLl to compute U , we can usu-
ally compute J significantly faster and for larger sets
of path beliefs, that is, instead of a total limit of 10-
12 path beliefs, each part of the independent partition
used in FACTl has a limit of 10-12 path beliefs.

6.4 ADJUSTING MISLEADING PRIORS

In practice, it may be the case that some priors are
misleading, that is, the correct value of a path variable
r has a lower probability than any other value of r. It is
not always possible to detect those cases; however, it is
possible to do so when the path beliefs are dependent,
and the majority of them gives preference to the cor-
rect relation. We illustrate this with a simple example.
Assume that the correct relation between two variables
X and Y is X ⇒ Y , and that an expert suggests that
P (X ⇒ Y ) = 0.1. Now assume that we have path be-
liefs that P (X ⇒ V ) = P (V ⇒ Y ) = 0.9. They are in-
coherent: by the probability axioms, P (X ⇒ Y ) ≥ 0.8
follows. Our method will implicitly consider this and
will increase P (X ⇒ Y ) while reducing P (X ⇒ V )
and P (V ⇒ Y ). The effect will be even higher if
more path beliefs suggest that P (X ⇒ Y ) is high.
For example, if P (X ⇒ Y ) = 0.1 and we have 4 such
pairs of path beliefs P (X ⇒ Vi) = P (Vi ⇒ Y ) = 0.9,
our method will assign P (X ⇒ Y ) = 0.632 and
P (X ⇒ Vi) = P (Vi ⇒ Y ) = 0.814 ∀i. We see that,
although P (X ⇒ Y ) was low initially, it was given a
high probability by our method because the other be-
liefs supported X ⇒ Y . Thus, considering dependent
beliefs and dealing with incoherence may identify and
adjust misleading beliefs.

6.5 INVALID CONFIGURATIONS

Let C be a configuration of path variables R. C is
invalid if ∃rX,Y ∈ R, s.t.: (a) rX,Y = “ ⇒ ” and
rX,Y = “ ⇐ ” is implied by C (acyclicity), or (b)
rX,Y = “ ⇔ ” and rX,Y ∈ {⇒,⇐} is implied by C
(definition of “ ⇔ ”), or (c) rX,Y = “ � ” and rX,Y ∈
{⇒,⇐,⇔} is implied by C (definition of “ � ”).

These conditions are sufficient to identify invalid con-
figurations, but not necessary. The simplest example
is a dataset with two variables X and Y : the config-
uration rX,Y = “ ⇔ ” is invalid as there is no other
variable to serve as a common ancestor. Yet, the above
cases will not identify it as such. However, when the
number of variables in the data is large relative to the
number of path variables (specifically if |V| ≥ |VR|+n
holds)1, these conditions are also necessary. From now
on we assume that the number of nodes in V is suffi-
ciently large.

7 SEARCH AND OPERATORS

In this paper we will use the Greedy Search method,
searching in the space of DAGs. The method starts
from a given initial DAG G0 (usually chosen to be
the empty DAG) and performs a hill-climbing search,
considering all DAGs resulting by a edge-insertion,
edge-removal or edge-reversal operation.

7.1 EXTENDING GREEDY SEARCH

Greedy Search can be trivially extended to addition-
ally consider the prior score Sc(G|J) of a DAG G. To
do this, it first has to determine the configuration CG

of G, which can be computed in time O(|V | · n) given
the transitive closure of G (stored as an adjacency ma-
trix). The transitive closure of a DAG can be com-
puted in time O(|V |2 + |V | · |E|); run a DFS for each
node and keep track of all visited nodes. There are
faster and more complex algorithms [Simon, 1988], but
the trivial method is usually faster for smaller graphs
(we used the trivial method in our implementation).

1There are cases where a smaller number of variables is
sufficient, but we did not further investigate it.



A problem is that, at each step of the search, the tran-
sitive closure has to be computed for all DAGs result-
ing by one of the search operators, whose number is
Θ(|V |2). The total cost is then O(|V |4 + |V |3 · |E| +
|V |3 ·n), which is a significant computational overhead.
A straight-forward optimization is to dynamically up-
date the closure after each edge insertion or removal.
Various methods exist [Demetrescu and Italiano, 2008]
trading off the time it takes to update the closure and
querying for reachability. Assuming unit query time, a
O(|V |2) update time is optimal [Demetrescu and Ital-
iano, 2008]. Using this method, the time-complexity
can be reduced to O(|V |4 + |V |3 · n).

7.2 SWAP-EQUIVALENT OPERATOR

To take advantage of the extra information provided
by the path beliefs, one may have to use additional
search-operators. That is because the standard opera-
tors make only small local improvements, without con-
sidering the global information provided by the path
beliefs. Thus, an operator is desirable which is able to
simultaneously make multiple adjustments in order to
also change the configuration of the path variables.

We propose the swap-equivalent-operator. The
idea is simple: at each step, after the application of
a standard operator, we allow the algorithm to swap
to a Markov equivalent DAG with the highest path be-
lief score Sc(G|J) increase. If the data score Sc(G|D)
has the score-equivalence property (e.g. BDe), the re-
sulting DAG has the same data score but may have a
higher prior score. This DAG can be computed with a
simple modification of an algorithm presented in [Bor-
boudakis and Tsamardinos, 2012]. Due to space limi-
tations, the algorithm will not be described here.

8 EXPERIMENTAL RESULTS

Employing Causal Knowledge. We consider the
graph X → Y → Z. We use the path belief P (X ⇒
Z) = 0.9 and distribute the remaining 0.1 mass of
probability to the remaining values of rXZ propor-
tional to the values that correspond to a uniform prior.
We repeat the following experiment 10000 times: (a)
we randomly select the number of states for each vari-
able to be either 3 or 4, (b) we sample the cpts for
each variable from the gamma distribution Γ(k, θ),
with shape parameter k set to 0.5 and scale param-
eter θ set to 1, (c) we sample a dataset of size 200,
(d) we increase the samples of the dataset provided
to the scoring method from 10 to 200 with step size
of 10, (e) we identify the highest scoring network out
of all 25 possible DAGs using informative and unin-
formative priors and the BDeu score with Equivalent
Sample Size (ESS) set to 1.

Results: Figure 3a plots the percentage of the time
the PDAG X − Y − Z of the true network was found
exactly, with and without informative priors. First no-
tice, that when the true PDAG is found, the edges are
also always oriented correctly since the true network
has a higher prior than any other Markov-equivalent
graph. Perhaps more surprising though, notice that
the informative priors also improve the learning of the
skeleton. The belief X ⇒ Z tends to add a path from
X to Z. The associations X−Y and Y −Z are always
higher than or equal to the association between X−Z
[Cover and Thomas, 2006]. Thus, it is the correct path
X − Y − Z that tends to be induced, rather than any
other network with a path X ⇒ Z.

Employing Associative Knowledge. We run a
similar proof-of-concept experiment where the true
network is a single collider X → Y ← Z. We use the
same settings as before for three cases: correct associa-
tive priors P (X � Z) = 0.9, uniform priors, and incor-
rect associative priors P (X associated with Z) = 0.9.

Results: The results are shown in Figure 3b. As ex-
pected, correct prior beliefs clearly improve the chances
of identifying the true PDAG; the effect is exactly the
opposite when misleading, incorrect beliefs are provided
to the algorithm. Of course, asymptotically any non-
zero priors play no role.

Learning Larger Networks. To generate path be-
liefs we use three parameters: the number of indepen-
dent components nc, the number of nodes appearing in
an independent component cs, and whether we want
them to be coherent or incoherent. Path variables
were generated as follows: for given cs and nc, we ran-
domly pick nc non-overlapping sets, each containing cs
nodes of the network, and consider all possible pairs
between them as path variables, resulting in a total of
nc·cs·(cs−1)/2 path variables. This is done in order to
be able to consider large sets of path variables. Then,
we randomly assign a probability p ∈ [0.5, 0.99] to the
true value of each path variable, and split the remain-
ing 1− p mass probability in an uninformative way to
the remaining values. This process is repeated for each
independent component until it is coherent or incoher-
ent, depending on the input parameter. To estimate
U we sampled S = 106 DAGs and l was set to the ma-
chine epsilon. We used the ALARM [Beinlich et al.,
1989] and the INSURANCE [Binder et al., 1997] net-
works to evaluate our methods. We employed Greedy
Search with the BDeu metric and ESS=1. We run
the method starting from the empty graph with unin-
formative and informative priors, as well as with and
without the swap-equivalent-operator in the case of in-
formative priors. Finally, we compute the Structural
Hamming Distance [Tsamardinos et al., 2006] from the
PDAG of the true network. We used the PDAG to



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
True DAG: X−>Y−>Z

Sample Size

P
er

ce
nt

ag
e 

of
 e

xa
ct

 P
D

A
G

 le
ar

ne
d

(X causes Z Priors)
Uninformative Priors

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
True DAG: X−>Y<−Z

Sample Size

P
er

ce
nt

ag
e 

of
 e

xa
ct

 P
D

A
G

 le
ar

ne
d

(X not associated with Z) Priors
Uninformative Priors
(X associated with Z) Priors

(b)

100 200 500 1K 2K 5K 10K
30

40

50

60

70

80

90

100
alarm network, incoherent, nc = 3, cs = 4

Sample Size

A
ve

ra
ge

 S
H

D
 b

et
w

ee
n 

P
D

A
G

s Uninformative Priors
Informative Priors, Swap Off
Informative Priors, Swap On

(c)

100 200 500 1K 2K 5K 10K
20

30

40

50

60

70

80

90
insurance network, incoherent, nc = 3, cs = 4

Sample Size

A
ve

ra
ge

 S
H

D
 b

et
w

ee
n 

P
D

A
G

s Uninformative Priors
Informative Priors, Swap Off
Informative Priors, Swap On

(d)

Figure 3: (a) Learning the orientations and the skeleton is facilitated by causal prior knowledge. (b) Learning
the graph is facilitated by correct associative prior knowledge and hindered by incorrect priors. (c-d) Learning
the ALARM and INSURANCE networks. The average Structural Hamming Distance (SHD) is shown with
increasing sample size, for component size (cs) 4 and number of components (nc) set to 3, and incoherent beliefs.
Using path beliefs, especially combined with the swap-equivalent operator, produces better networks on average.

avoid introducing an unfair advantage for our meth-
ods; all methods may find Markov equivalent DAGs,
but the ones using path beliefs may find more correctly
oriented edges. The sample size was varied within
{100, 200, 500, 1000, 2000, 5000, 10000}. The path be-
lief parameters were varied within {1, 2, 3, 4, 5} and for
nc and cs respectively, for both the coherent and inco-
herent cases. The experiment was repeated 100 times,
for randomly sampled datasets and path beliefs, with
all combinations of input parameters.

Results: Due to space limitations we report only the
results for incoherent path beliefs, with nc = 3 and
sc = 4 (18 beliefs). The results were similar for both,
coherent and incoherent priors. Also, with smaller
(larger) nc and sc, the difference between the uninfor-
mative and informative methods was smaller (larger).

The results are shown in Figures 3c and 3d. In all
cases, the SHD is smaller with the informative priors
than with uninformative priors. For the ALARM net-
work, notice that the SHD difference between the unin-
formative method and the informative method without
the operator decreases as sample size increases. The
reason is that, as sample size increases, the data score
becomes more important and the prior score tends to
be ignored; it usually is considered only close to local
maxima, where only small improvements in the data
score can be made. If however the swap-equivalent op-
erator is used, this does not happen, as it tries to main-
tain a high prior score during the whole search. Fi-
nally, notice the counter-intuitive behavior of increas-
ing SHD with increasing sample size in Figure 3d for
10K samples. Anecdotal experiments suggest that the
value of the ESS parameter is the reason for that be-
havior. However, when the swap-equivalent operator
is used, this phenomenon is almost nonexistent.

9 CONCLUSIONS

We present a method for computing informative pri-
ors given a set of causal and associative beliefs on
pairs of variables, as well as a novel search-operator
to take advantage of them. The priors can then be
employed by any search-and-score learning algorithm.
The method, for the first time, addresses the issues of
incoherent and possibly dependent priors. Providing
correct priors about pairwise causal or associative re-
lations improves learning both in terms of identifying
the orientation of the edges (for causal priors), but also
in terms of identifying the skeleton of the network.

There are numerous issues to still address regarding
both the method and the general problem. The al-
gorithm has exponential worst-case time complexity,
thus more efficient algorithms are desirable. Closed-
form solutions for computing the number of graphs
given path constraints are also desirable. Finally, in-
cluding other types of prior knowledge, as well as in-
corporating the strength of the causal effects or associ-
ations and other prior knowledge characteristics is an
interesting future direction to pursue.
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